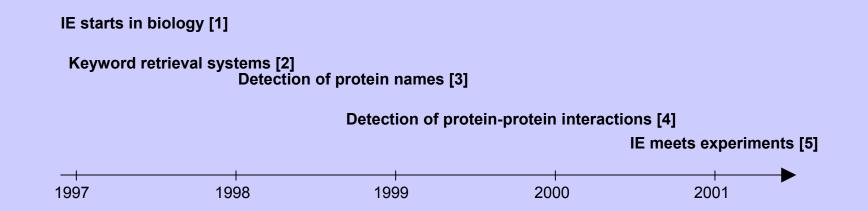
**Information Extraction in Molecular Biology and Biomedicine** 

# **Basel Computational Biology Conference. From Information to Simulation**


**Basel, 18-19 March 2004** 





# THE WEB OF MOLECULAR INFORMATON to the WEB OF KNOWLEDGE

#### **Information Extraction in Molecular Biology**



Ohta et al. (1997). "Automatic construction of Knowledge Bases form Biological Papers"

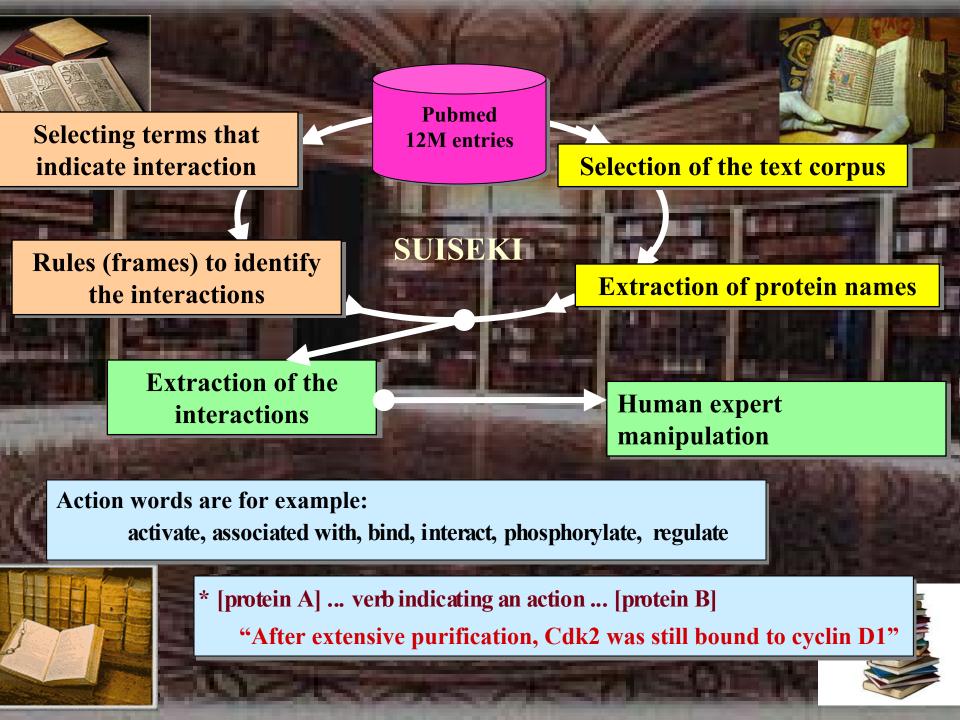
Andrade and Valencia (1997). "Automatic annotation for biological sequences by extraction of keywords from MEDLINE abstracts" Fukuda et al. (1998). "Information Extraction: Identifying Protein Names from Biological Papers"

Proux et al. (1998). "Detecting Gene Symbols and Names in Biological Texts: a first step ..."

Blaschke et al. (1999). "Automatic Extraction of Biological Information ...: Protein-Protein Interactions"

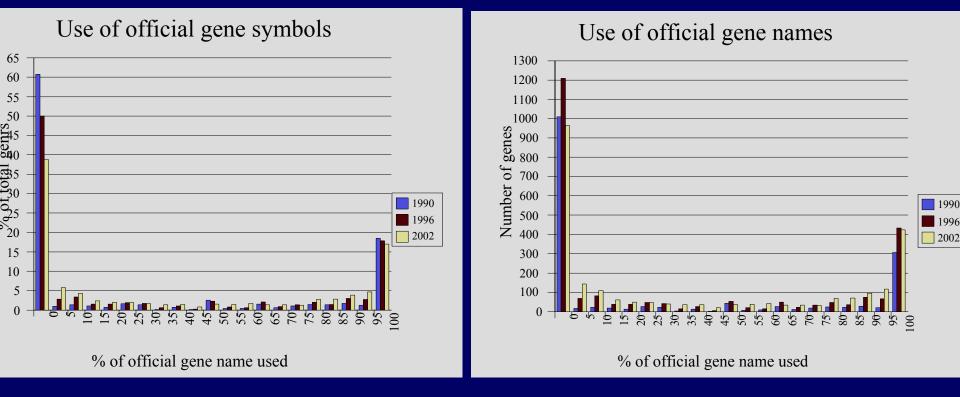
Park et al. (2001). "Incremental Parsing for Automatic Pathway Identification with Combinatorial Categorical Grammar"

Proux et al. (2000). "... Information Extraction Strategy for gathering Data on Genetic Interactions"


Rindflesch et al. (2000). "EDGAR: Extraction of Drugs, Genes and Relations from the Biomedical Literature"

Sekimizu et al. (1998). "Identifying the Interaction between Genes and Gene Products based on frequently seen Verbs in Medline stracts"

Thomas et al. (2000). "Automatic Extraction of Protein Interactions from Scientific Abstracts"


Blaschke et al. (2001). "Mining functional information associated with expression arrays"

Jenssen et al. (2001). "A literature network of human genes for high-throughput analysis of gene expression"



## **Basic problem: identify Bio-entities in text**

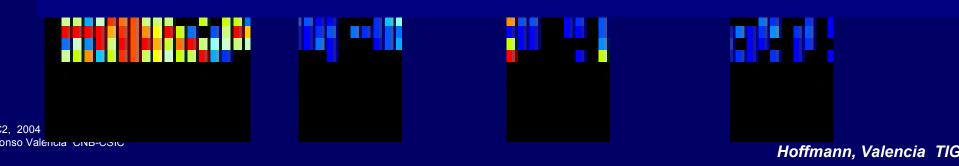
| Genes and proteins                                    | cdk2, interleukin-8                          |
|-------------------------------------------------------|----------------------------------------------|
| Chemicals, metabolites                                | acrilamide, fructose 6-phosphate             |
| • Drugs                                               | aspirin, prozac                              |
| • Diseases                                            | Diabetes mellitus, Angelman syndrome         |
| <ul> <li>Pathways, processes</li> </ul>               | Pentose phosphate pathway, DNA replication   |
| • Species, tissues                                    | Saccharomyces cerevisiae, vertebrates, brain |
| <ul> <li>Cell types, cell lines, mutations</li> </ul> | macrophages, cd4+, liver, 95arg->trp         |
| Experimental techniques                               | 2D electrophoresis, NMR                      |
|                                                       |                                              |



| OFFICIAL | 62542 | 44.46 % |
|----------|-------|---------|
| ALIAS    | 51749 | 36.79 % |
| PROTEIN  | 26363 | 18.74 % |

## The 2492 selected genes in the year 2002 were cited 140654 time

Tamames et al., 2


Evolution of gene names

## Gene names



The evolution of gene names over time is a "scale free" proces

- "critical state" system
- the evolution of a gene name cannot be predicted
- some gene name act as attractors of other names



# **Example of annotation of a PubMed article**

[Lipid-poor apolipoproteins]<sub>prot</sub> remove cellular [cholesterol]<sub>chem</sub> and [phospholipids]<sub>chem</sub> by an [active transport pathway]<sub>proc</sub> controlled by an [ATP binding cassette transporter]<sub>prot</sub> called [ABCA1]<sub>prot</sub>. Mutations in [ABCA1]<sub>prot</sub> cause [Tangier disease]<sub>dis</sub>, a [severe HDL deficiency syndrome]<sub>dis</sub> characterized by a rapid turnover of plasma [apolipoprotein A-I]<sub>prot</sub>, accumulation of [sterol]<sub>chem</sub> in tissue [macrophages]<sub>cell</sub>, and prevalent [atherosclerosis]<sub>dis</sub>

- Genes/proteins
- **Chemicals**
- Diseases
- Pathways/processes
- Cell types



#### **Descriptions for RHO gene**

Visual pigments are the light-absorbing molecules that mediate vision. They consist of an apoprotein, opsin, covalently linked to cis-retinal.

Defects in RHO are one of the causes of autosomal

dominant retinitis pigmentosa.

Tissue specificity: Rod shaped photoreceptor cells which mediates vision in a dim light.

#### Keywords

cis-retinal light-absorbing opsin photoreceptor pigment pigmentosa retinitis rod

Tamames et al., 2

#### Second step: Label the words in the article according to the definitions

sentence: The subunit alpha of DNA polymerase is a key component of the replication machine

#### **Definitions:**

- 295 POLA DNA polymerase, alpha catalitic subunit
- 297 POLB DNA polymerase, subunit beta
- 298 POLD DNA polymerase, delta subunit

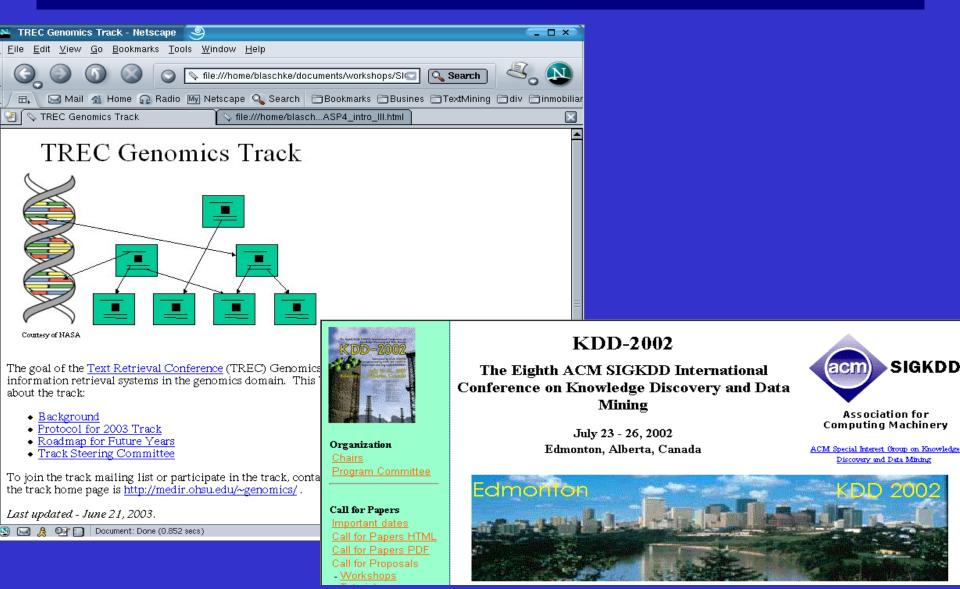
## Labelling

## The subunit alpha of DNA polymerase is a key

| 295 | 295 | 295 | 295 |
|-----|-----|-----|-----|
| 297 |     | 297 | 297 |
| 298 |     | 298 | 298 |

## component of the replication machinery.

# **RESULTS of TEXT DETECTIVE**


|                         | Possible<br>genes | True<br>pos | Precision<br>(PubMed) | Selected/<br>Correct | Recall | Precision |
|-------------------------|-------------------|-------------|-----------------------|----------------------|--------|-----------|
| Curated set of articles | 2173              | 612         | 28%                   | 648 / 575            | 93%    | 88%       |

## **Selected difficult cases**


| Symbol                          | Total in<br>PubMed | True<br>pos | Precision<br>(PubMed) | Selected/<br>Correct | Recall | Precision |
|---------------------------------|--------------------|-------------|-----------------------|----------------------|--------|-----------|
| HK1 (Hexokinase 1)              | 101                | 36          | 35.6%                 | 42 / 32              | 89%    | 76%       |
| LHB (Luteinizing hormone beta)  | 113                | 11          | 9.7%                  | 7 / 6                | 55%    | 86%       |
| RSN (Restin)                    | 41                 | 3           | 7%                    | 1/1                  | 33%    | 100%      |
| SCT (Secretin) (Year 2001 only) | 158                | 1           | 0.6%                  | 1/1                  | 100%   | 100%      |



#### **TREC – Genomics Track and KDD**



**By** Alexander Ye



- Does that paper contain any curatable gene product information (Yes/No)? For each gene mentioned in the paper, does that paper have experimental results for
  - Transcript(s) of that gene (Yes/No)?
  - Protein(s) of that gene (Yes/No)?
- •Also produce a ranked list of the papers

Training set (6 weeks) 862 full papers and list of genes

Test set (2 weeks) 213 papers

|                       | Best | Median     |
|-----------------------|------|------------|
| Ranked-list:          | 84%  | <b>69%</b> |
| Yes/No curate paper:  | 78%  | 58%        |
| Yes/No gene products: | 67%  | 35%        |

learForest - Celera team used manually generated rules and patterns

2, 2004 onso Valencia CNB-CSIC A. Yeh, MITRE



## **BioCreAtlvE**

Any groups are now working in the area of text mining. However, despite increased activity in this area, there are <u>no common</u> <u>standards or shared evaluation criteria</u> to enable comparison among the different approaches. Therefore the BioLINK group Biological Literature, Information and Knowledge, [BioLINK]) is organizing a CASP-like evaluation for the text data mining community applied to biology: BioCreAtIvE - Critical Assessment of Information Extraction systems in Biology. Following the experience of CASP, the emphasis will be more on the <u>comparison of methods and the community assessment of scientific</u> progress, rather than on the purely competitive aspects.

http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html

hurs Nov 13: Test data available (for all tasks/sub-tasks)
 Ved Dec 31: Results back to participating groups
 <u>Aarch 30: EMBO Evaluation Workshop, Grenada, Spain</u>

Nov 19: System submissions are due Feb 04 Submission for workshop

Biocreative team: Swiss-Prot/EBI MITRE CNB/Protein Design Group

Database curators: R. Apweiler, E. Camon, C. O'Donnovan SWISS-PROT C. Wu: PIR J. Blake: MGI I. Donaldson: BIND

Text mining researchers: A. Valencia and C. Blaschke: CNB L. Hirschman and A. Yeh: MITRE L. Hunter, U. of Colorado S-K Ng, Institute for Infocomm Research, Singapore C. Friedman, Columbia

Help from L. Brivell EMBO J. Wilbur and L. Tanabe NCBI

Full-text access: HighWire Press



## **BioCreAtIvE**

#### **Training**

674 unique GOs and 1907 in total (i.e. each GO appears about 3 times) 636 papers released for training + 150 Nature journals (Nat. Gen, Nat. Med and Oncogene)

#### **Testing**

About 200 proteins. same number of papers and maybe twice as much GO annotations

#### Task 1: entity extraction

The goal in defining this task was to provide a way of assessing the ability of an automated system to identify the genes (or proteins, where there is ambiguity) mentioned in text.

The "natural language processing" or MUC version of this task has required that a system <u>identify each</u> mention of a gene-or-protein in the text.

http://www.mitre.org/public/biocreative/

#### Task 2: functional annotation of gene products

The second task will address the assignment of GO annotations to human proteins [GOA]

- 1. 'Recover' text that provides evidence for the GO annotation
- 2. Provide GO annotation for human proteins
- 3. Selection of relevant papers

http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html

## **BioCreAtlvE**

#### **Task 1: Entity Extraction Task**

1. Gene list annotation (Creating a list of genes mentioned in an abstract) Useful for indexing

2. Gene name mentions (Using data provided by John Wilbur and Lorrie Tanabe, NCBI) Corresponds to "named entity" task in the natural language processing

3. Gene references (flagging all references to a named gene in a text) Useful as a building block for capturing relations **Entity Extraction Part 1: What a Contestant's System Should Return** 

- Return a list of the standardized names of the genes mentioned in each abstract: ٠ fs(1)h, Ubx. lab. N. nej, Dfd exd. We have screened the Drosophila X chromosome for genes whose dosage affects the function of the homeotic gene Deformed. One of these genes, extradenticle, encodes a homeodomain transcription factor that he erodimerizes with Deformed and other homeotic Hox proteins. Mutations in the hejire gene, which encodes a transcriptional adaptor protoin belonging to the CBP/p300 family, also interact with Deformed. The other previously characterized gene identified as a Deformed interactor is Notch, which encodes a transmembrane receptor. These three genes underscore the importance of transcriptional regulation and cell-cell signaling in Hox function. Four novel genes were also identified in the screen. One of these, **rancor**, is required for appropriate embryonic expression of Deformed and another homeotic gene, labial. Both Notch and nejire affect the function of another Hox gene, **Ultrabithorax**, indicating they may be required for homeotic activity in general.
  - Also mark 1 text mention of each gene in a list
    - Indicate which gene a mention is for

#### Part 1: Data Availability (Noisy)

PubMed/Medline abstracts

Papers for various model organism databases (Drosophila, mouse, yeast) and lists of genes (standardized names)Databases synonym lists

- Training set (1000's of Abstracts/Organism):
  - correct answer fs(1)h, Ubx, lab, N, nej, exd, Dfd
  - Genes in which a known name or synonym appears in the abstract fs(1)h, Ubx, N, nej, exd, Dfd
  - Other genes in the list Cg25C, cnc, kis, stout, apt, that do not appear in the abstract
- Training set (1000's of Abstracts/Organism):
  - Test set of 400 abstracts manually tagged

**Entity Extraction Part 2: Gene Name Mention** 

- Data provided by John Wilbur & Lorrie Tanabe, NCBI
  - 10,000 sentences manually annotated for genes
  - Separate development training and test sets
- occurrences of gene-related mentions and text spans

Mutation of **TTF-1-binding sites** (**TBE**) 1, 3, and 4 in combination markedly decreased transcriptional activity of **SP-A promoter-chloramphenicol acetyltransferase** constructs containing **SP-A** gene sequences from -256 to +45. Task 3: Gene references (flagging all references to a named gene in a text)

- Find every explicit gene name mention and not so explicit references
- Smaller training set (fewer number of abstracts)
  - Information is not available in the databases and more work is involved to annotate one abstract
- Related with relation extraction (examine every mention of every gene)

# Task 2. GO annotation

#### '.'Recover' text that proves the GO annotation:

Protein, GO annotation, associated publication >>> provide a part of the document that would (to a human expert) prove the original annotation.

#### P. Provide GO annotation for human proteins:

protein, associated publication >>> 'annotate' automatically the GO class and provide a part of the locument to prove the annotation.

#### B. Selection of relevant papers:

protein and a large number of papers (many irrelevant) >> relevant papers with information suitable to derive GO annotation and parts of the papers useful for annotation.



# Challenges

We do not provide protein name dictionaries, i.e. the name of a protein in the GOA file may not be used in the associated documents but a synonym that may be found in Swiss-Prot or in other databases. It is the responsibility of the participants to <u>collect synonyms</u> <u>lists to detect the protein names</u> correctly in the documents.

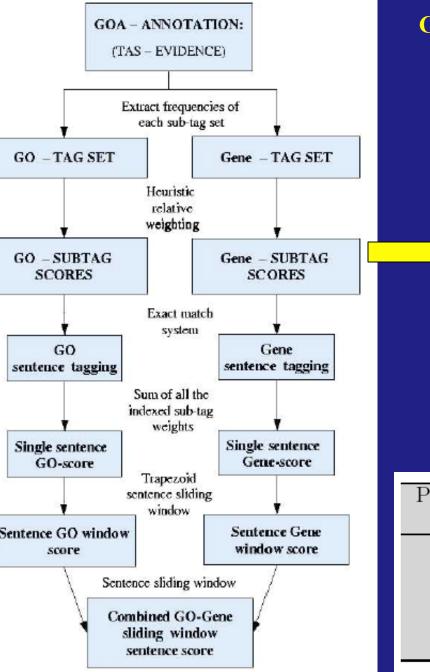
.GO consists of <u>three (non overlapping) parts</u> (biochemical function, molecular process, cellular component) that are treated separately

.<u>One protein can have many functions</u> (be part of many processes, be localized in different places in the cell) and can therefore appear many times in the corresponding parts of GO

*The function of a protein (its molecular processes, cellular components) can be described in many different articles and in different WAYS* 

.The GO codes have to be predicted precisely

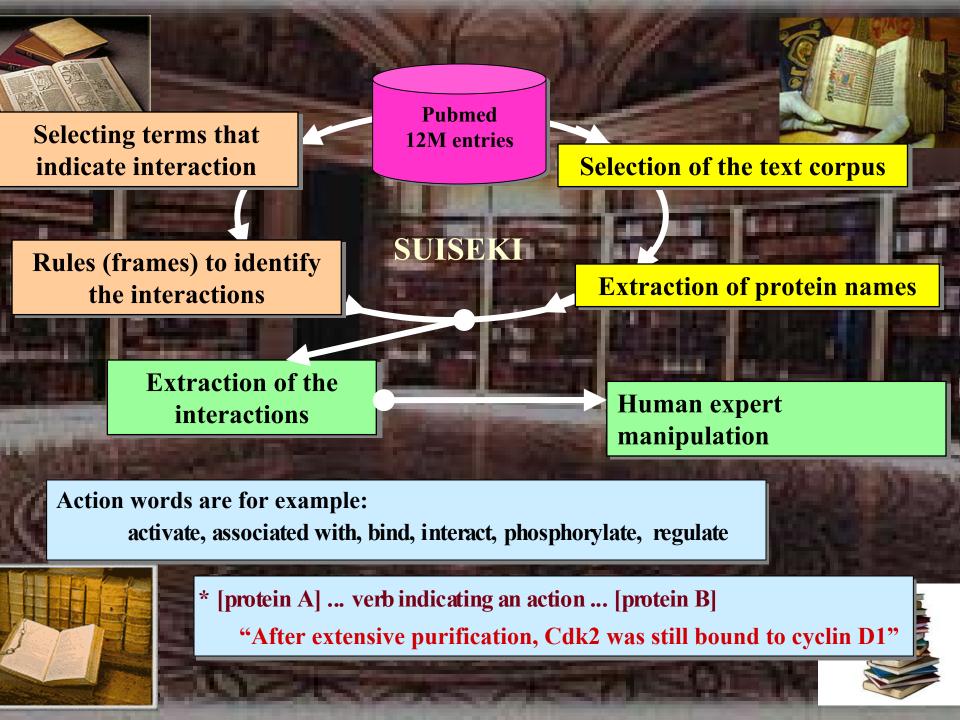
*.One article can describe different functions (processes, components) of the same protein AND/OR mention a number of proteins of which all or just a subset are relevant in our evaluation task* 

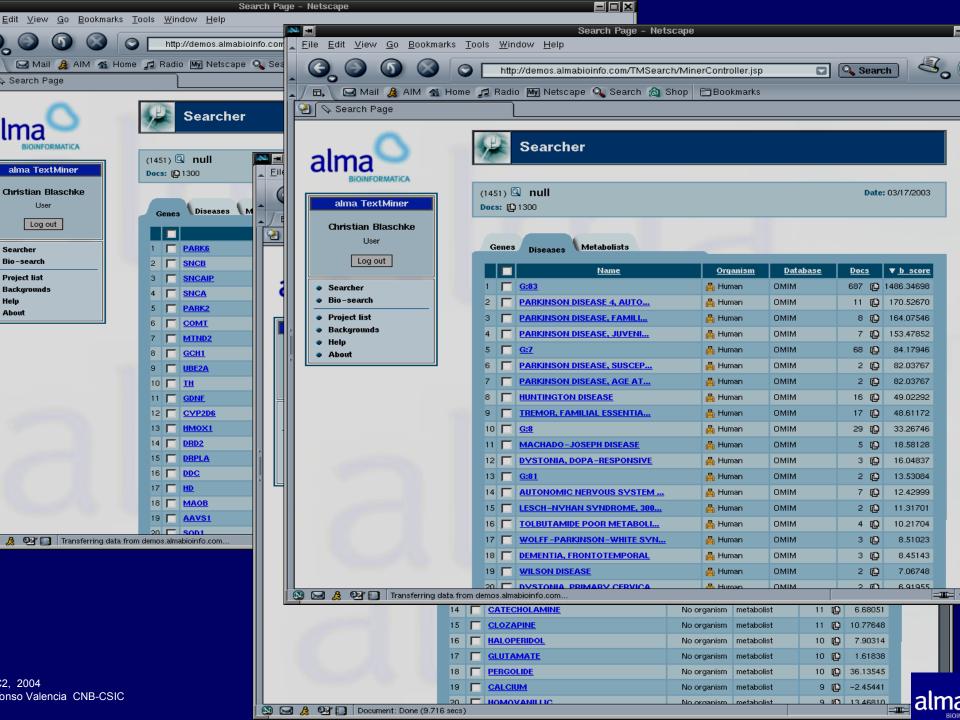

•Full-text articles are long and in general only a (small) section of the whole paper is relevant for classification of a certain protein (maybe a paragraph or two) <sup>52, 2004</sup> onso Valencia CNB-CSIC

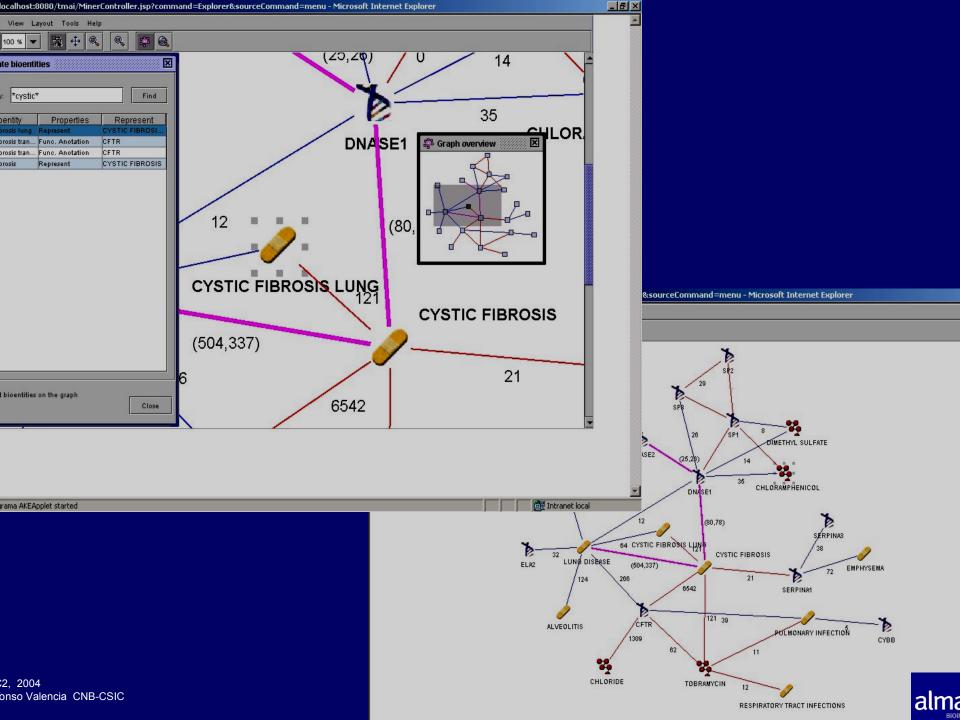
# **Examples**

| 1 <u>RGS4</u>                                                                            | GO:0005516 ca                           | Imodulin binding ac    | tivity                                     | PMID         | 10747990        |               |        |
|------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------------------|--------------|-----------------|---------------|--------|
| 'Indeed, Ca2+/calmo                                                                      | dulin binds a com                       | olex of RGS4 and a t   | ransition state a                          | nalog of Ga  | alpha i1-GDI    | P-AIF4-'      |        |
| <u>2 p21waf/cip1</u>                                                                     | GO: 0008285 neg                         | native regulation of c | ell proliferation                          | PMID         | <u>10692450</u> |               |        |
| The p21waf/cip1 proproliferation                                                         | otein is a universal                    | inhibitor of cyclin k  | inases and plays                           | an importa   | ant role in in  | hibiting cell |        |
| <u>3 Thrombin</u>                                                                        | GO:0006915 apo                          | ptosis                 |                                            | PMID         | 10692450        |               |        |
| Induction of Apopto                                                                      | osis by Thrombin'                       |                        |                                            |              |                 |               |        |
| <u>4 <u>RGS1,RGS2,RG</u></u>                                                             | <mark>54,RGS16</mark> _GO: 000<br>PMID  | 08277 regulation of    | <u>G-protein couple</u><br><u>10747990</u> | ed receptor  | protein sigr    | naling pathwa | Y      |
| We report that calm<br>RGS4, RGS10, RGS<br>protein signaling by                          | 16, and GAIP' and                       | later in the text 'To  |                                            |              |                 |               |        |
| establish first a the<br>interpret from the se                                           |                                         |                        |                                            |              |                 |               |        |
| 5 MIP-1alpha                                                                             | GO:0007186 G-p                          | rotein coupled recep   | otor protein sign                          | aling pathw  | vay PMIE        | 0 10734056    |        |
| Taken together, the<br>pathway, by recepto<br>level of phospholipa<br>MCP-2, and MCP-3 v | r phosphorylation<br>se C activation' a | at the level of recept | tor/Ġ protein coເ                          | upling and I | by an unkno     | wn mechanism  | n at i |

The first sentence establishes that CCR1 is related to a G-protein coupled receptor pathway and the second sentence states that MIP-1alpha binds to this receptor and it can be deduced that it is therefore also related to this process.


the





## **CNB** Text to GOA

| [ | GO sub-tag set          | Gene sub-tag set        |
|---|-------------------------|-------------------------|
|   | GO term (original)      | Gene name / symbol      |
|   | NL-GO term              | Variants of Gene name   |
|   | Externally linked terms | Externally linked names |
|   | GO word tokens          | Gene name word tokens   |
| > | GO definition tokens    | GOBO mutation term      |
|   | GO co-occurence tokens  | GOBO sequence term      |

| Protein/GO |       | Predic  | tion Cate | egory |       |
|------------|-------|---------|-----------|-------|-------|
| Matches    | Low   | General | High      | None  | Tota  |
| High       | 21.05 | 6.57    | 28.85     | 0     | 56.47 |
| General    | 4.48  | 2.28    | 10.67     | 0     | 17.43 |
| Low        | 12.10 | 4.10    | 8.19      | 0     | 24.39 |
| None       | 0.10  | 0       | 0         | 1.61  | 1.71  |
| Total      | 37.73 | 12.95   | 47.71     | 1.61  | 100   |









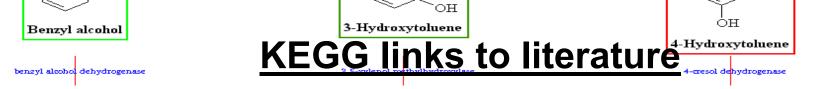
Experiment: I Prostate Cancer vs. GST

GST used as marker of prostate cance

Terms

Doub

## **Gene - disease** Glutathione S-transferasa (GSTP1) - prostate cancer


| Sente | nce list                                                                                                                                                                                                                                                                            | 1-50 / 273 Page: | 1-2-3-4-5-6      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
|       | Sentence                                                                                                                                                                                                                                                                            | z score          | ▼ <u>b score</u> |
| 1     | DNA-based detection of prostate cancer in urine after prostatic massage.                                                                                                                                                                                                            | 0.00000          | 61.00558         |
| 2     | Decoding of the results revealed that 22 of 28 (79%) prostate tumors were<br>positive for GSTP1 methylation.                                                                                                                                                                        | 0.00000          | 52.87305         |
| 3     | GSTP1 CpG island hypermethylation is the most common somatic genome<br>alteration described for human prostate cancer (PCA);                                                                                                                                                        | 0.00000          | 51.52617         |
| 4     | Analysis of GSTP1 promoter hypermethylation by MSP thus provides a specific tool<br>for molecular diagnosis of prostate cancer in bodily fluids.                                                                                                                                    | 0.00000          | 45.48312         |
| 5     | This epigenetic DNA alteration served as the target for molecular detection of<br>prostate cancer cells in urine sediments after prostatic massage.                                                                                                                                 | 0.00000          | 45.27233         |
| 6     | Molecular detection of prostate cancer in urine by GSTP1 hypermethylation.                                                                                                                                                                                                          | 0.00000          | 44.20658         |
| 7     | GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells.                                                                                                                                                                | 0.00000          | 43.88204         |
| 8     | In one of the cases, DNA hypermethylation at one GSTP1 allele and deletion of the<br>other GSTP1 allele were evident.                                                                                                                                                               | 0.00000          | 43.78748         |
| 9     | Fluorescent methylation-specific polymerase chain reaction for DNA-based<br>detection of prostate cancer in bodily fluids.                                                                                                                                                          | 0.00000          | 42.36314         |
| 10    | Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and<br>organ-confined prostate adenocarcinoma.                                                                                                                                                                 | 0.00000          | 40.99850         |
| 11    | We investigated GSTP1 promoter hypermethylation in DNA isolated from plasma,<br>serum, ejaculate, and urine after prostate massage and from prostate carcinoma<br>tissues from 33 patients with prostate cancer and 26 control patients with benign<br>prostatic hyperplasia (BPH). | 0.00000          | 40.94774         |
| 12    | DNA-based detection of prostate cancer in blood, urine, and ejaculates.                                                                                                                                                                                                             | 0.00000          | 40.71821         |
| 13    | GST-pi was detected in only 3.5% (2/56) of the prostate cancers.                                                                                                                                                                                                                    | 0.00000          | 40.04232         |
| 14    | METHODS: Bisulfite treatment followed by methylation-specific polymerase chain<br>reaction was used to detect GSTP1 promoter hypermethylation in DNA isolated from<br>urine sediments obtained after prostatic massage of men with and without prostate<br>cancer.                  | 0.00000          | 39.57937         |

GST is not expressed in cancer cells due to the hypermetylation of a CpG island its promotor

#### The hypemetylation detected by PCI

For diagnosis, DNA samples are extracted from urine samples. Hypermetylatic is analyzed on the promoter regions





- 98 pathways with more than one step (information available for 73)
- 2111 individual steps.

## **Protein-compound links in abstracts**

| Total                                      | 2111 steps | 856 linked | (40 %) |
|--------------------------------------------|------------|------------|--------|
| Bacterial chemotaxis                       | 19         | 17         | (89 %) |
| Glutathione metabolism                     | 7          | 6          | (85 %) |
| Fatty acid biosynthesis -path 1-<br>(78 %) | 9          | 7          |        |

### in sentences

| <b>Total</b><br>Bacterial chemotaxis                       | 2111 steps | 611 linked | (29%)<br>(65 %)   |
|------------------------------------------------------------|------------|------------|-------------------|
| Two-component system                                       | 85         | 52         | . ,               |
| (61 %)<br>Standard metabolic<br>Citrate cycle - TGA cycle- | 27         | 17         | (63 %)            |
| Gentisate                                                  | он<br>Он   |            | Leon et al., 2003 |

| Table 1. Frame represen                                                     | tation and ac        | curacy for 100 randor                   | nly selected cases.                       |                                                    |
|-----------------------------------------------------------------------------|----------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------|
| reene                                                                       | Probability<br>score | Num ber of hits in<br>cell-cycle corpus | Number of Lits is<br>secclaromyces corpus | Precision,<br>secclaromyces<br>corpus (percantaga) |
| ýpe I                                                                       |                      |                                         |                                           |                                                    |
| syntactical class = proteins] (0-5 words) [verbs]<br>0-5) [proteins]        | 4                    | 2628                                    | 13667                                     | 68                                                 |
| proteins] (0-5) [verbs] (6-10) [proteins]                                   | 3                    | 969                                     | 5380                                      | 50                                                 |
| proteins] (6-10) [verbs] (0-5) [proteins]                                   | 3                    | 892                                     | 5090                                      | 54                                                 |
| proteins] (0-10) [verbs] (0-10) [proteins]                                  | 2                    | 278                                     | 1672                                      | 33                                                 |
| proteins] (*) [verbs] (*) [proteins]                                        | 1                    | 1632                                    | 11080                                     | 21                                                 |
| rotein verbs protein                                                        | NA                   | 6399                                    | 36889                                     |                                                    |
| proteins] (*) [verbs] (0-3) but not (0-3) [proteins]                        | 0                    | 26                                      | 64                                        |                                                    |
| proteins] (*) cannot (0-3) [verbs] (*) [proteins]                           | 0                    | 7                                       | 24                                        |                                                    |
| proteins] (*) does not (0-3) [verbs] (*) [proteins]                         | 0                    | 38                                      | 235                                       |                                                    |
| proteins] (*) did not(0-3) [verbs] (*) [proteins]                           | 0                    | 34                                      | 218                                       |                                                    |
| proteins] (*) was not (0-3) [verbs] (*) [proteins]                          | 0                    | 12                                      | 77                                        |                                                    |
| proteins] (*) not (0-3) [verbs] (*) by (*) [proteins]                       | 0                    | 6                                       | 101                                       |                                                    |
| proteins] (*) not required for (0-3) [verbs] (*) [proteins]                 | 0                    | 4                                       | 10                                        |                                                    |
| proteins] (*) failed to (0-3) [verbs] (*) [proteins]                        | 0                    | 2                                       | 67                                        | -                                                  |
| legations                                                                   | NA                   | 129                                     | 796                                       |                                                    |
| ype II                                                                      |                      |                                         |                                           |                                                    |
| verbs] of (D-3) [proteins] (D-3) by (D-3) [proteins]                        | 5                    | 1                                       |                                           |                                                    |
| verbs] of (0-3) [proteins] (0-3) to (0-3) [proteins]                        | 5                    | 29                                      |                                           |                                                    |
| nouns] of (0-3) [proteins] (0-3) by (0-3) [proteins]                        | 5                    | 93                                      | 400                                       |                                                    |
| nouns] of (D-3) [proteins] (0-3) with (0-3) [proteins]                      | 5                    | 66                                      | 386                                       |                                                    |
| nouns] between (0-3) [proteins] (0-3) and (0-3) [protein                    | s] 5                 | 83                                      | 437                                       |                                                    |
| erb/noun protein protein                                                    | NA                   | 242                                     | 1223                                      |                                                    |
| ype III                                                                     |                      |                                         |                                           |                                                    |
| proteins] (0-2) [proteins] (0-2) complex                                    | 5                    | 43                                      | 239                                       | 1                                                  |
| complex containing (0-3) (proteins) (0-2) and                               | 5                    | 7                                       | 21                                        |                                                    |
| D-2) [proteins]                                                             |                      |                                         |                                           |                                                    |
| omplexes containing (O-3) (probeins) (O-2) and<br>O-2) (proteins)           | 5                    | 1                                       | 7                                         | (                                                  |
| complex formed between (C-3) [proteins] (C-2) and<br>C-2) [proteins]        | 5                    | D                                       | 1                                         | ·(*)                                               |
| complex of (0-3) [proteins] (0-2) and (0-2) [proteins]                      | 5                    | 3                                       | 31                                        | 100                                                |
| complexes of (O-3) [profeins] (O-2) and (O-2) [profeins]                    | 5                    | 1                                       | 20                                        | 89(*)                                              |
| ormation of a complex between (O-3) [proteins] (O-2)<br>nd (O-2) [proteins] | 5                    | D                                       | 1                                         | -(*)                                               |
| ormation of complexes between (0-3) [proleins] (0-2)<br>nd (0-2) [proteins] | 5                    | D                                       | 1                                         | -(*)                                               |
| proteins] (0-2) form a complex with (0-2) [proteins]                        | 5                    | 5                                       | 13                                        | 100 (*)                                            |
| proteins] (0-2) [proteins] (0-2) complexes                                  | 5                    | 11                                      | 67                                        | 55(*)                                              |
| proteins] (0-2) [proteins] (0-2) dimer                                      | 5                    | D                                       | 7                                         | -(*)                                               |
| proteins] (0-2) [proteins] (0-2) heterodimer                                | 5                    | 2                                       | 16                                        | 64 (*)                                             |
| proteins] (0-2) [proteins] (0-2) homoclimer                                 | 5                    | D                                       | 3                                         | -(*)                                               |
| complexes                                                                   | NA                   | 73                                      | 430                                       | NA                                                 |
|                                                                             |                      |                                         |                                           |                                                    |

(\*) fewer than 10 serviences were available for analysis

## Suiseki (motivation)

"There are advantages to each of these approaches [grammar or pattern matching]. Generally, the less syntax is used, the more domain-specific the system is. This allows you to construct a robust system relatively quickly, but many subtleties may be lost in the interpretation of the sentence.

... In some applications, however, the domaindependent pattern-matching approach may be the only way to attain reasonable performance in the foreseeable future"

Allen, J. (1995). Natural language understanding.

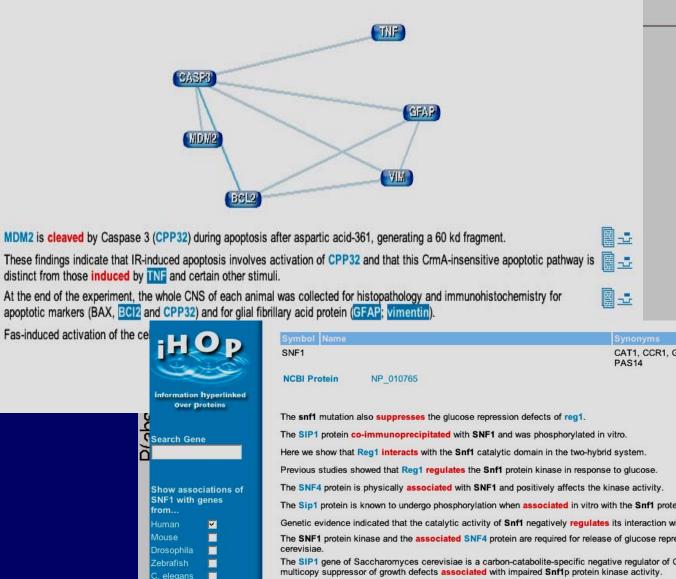
#### **Evaluation of the system**

| COVERAGE<br>interactions |           | coverage wo | ords           | coverage          |        |  |  |
|--------------------------|-----------|-------------|----------------|-------------------|--------|--|--|
| corpus                   | Abstracts | identified  | unique         | identified unique |        |  |  |
| cell cycle               | 5,283     | 69,193      | 18, <b>942</b> | 6,778             | 4,657  |  |  |
| yeast                    | 43,417    | 500,943     | 100,729        | 39,126            | 25,988 |  |  |

#### Relation between accuracy and number of instan

| tein n ames                      | in y east cell    | cycle corpus |               | N ames           | Sen tence s |           |       |
|----------------------------------|-------------------|--------------|---------------|------------------|-------------|-----------|-------|
|                                  | ins tan ces       | Recall (*)   | Precision (*) |                  | % correct   | % correct | mea n |
| ected names                      | 1387              |              |               |                  | names       |           |       |
| acted names                      | 1766              |              |               | first 25%        | 76          | 80        | 8.5   |
| rect dete ctio n                 | 1331              | 96.0 %       | 75.4 %        | sec on d quarter | 71          | 69        | 4.0   |
| 1 pl ete ly<br>rect d ete ctio n | 1201              | 86.6 %       | <b>68.0 %</b> | third quarter    | 60          | 63        | 3.2   |
|                                  |                   |              |               | last quarter     | 52          | 42        | 1.5   |
| a luat ion in 100 r              | andomly chosen ge | enes         |               |                  |             |           |       |




tion hyperlinked er proteins

Gene

odel

rsion

the graph nd to genes cur in at least 2 🎔 3 phrases.



Me SH Terms level 1-3 level 4-6 level 7-9 Gene s

|                                          | Symbol Name                                                                                                    | Synonyms                                                                                                        | Organism                   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| luck                                     | SNF1                                                                                                           | CAT1, CCR1, GLC2, HAF3,<br>PAS14                                                                                | Saccharomyces cerevisia    |
|                                          | NCBI Protein NP_010765                                                                                         |                                                                                                                 |                            |
| information hyperlinked<br>Over proteins |                                                                                                                |                                                                                                                 |                            |
| 2                                        | The snf1 mutation also suppresses the glucose repress                                                          | sion defects of reg1.                                                                                           |                            |
| Search Gene                              | The SIP1 protein co-immunoprecipitated with SNF1 a                                                             | nd was phosphorylated in vitro.                                                                                 |                            |
| ď                                        | Here we show that Reg1 interacts with the Snf1 catalyt                                                         | ic domain in the two-hybrid system.                                                                             | <b>±</b> ,                 |
|                                          | Previous studies showed that Reg1 regulates the Snf1                                                           | protein kinase in response to glucose.                                                                          | <u>_</u> ±                 |
| Show associations of                     | The SNF4 protein is physically associated with SNF1 a                                                          | nd positively affects the kinase activity.                                                                      |                            |
| SNF1 with genes<br>from                  | The Sip1 protein is known to undergo phosphorylation w                                                         | when associated in vitro with the Snf1 protein kinase.                                                          | <b>₫</b> ±,                |
| Human 💌                                  | Genetic evidence indicated that the catalytic activity of                                                      | Snf1 negatively regulates its interaction with Reg1.                                                            |                            |
| Mouse 📃<br>Drosophila 🔲                  | The SNF1 protein kinase and the associated SNF4 prot<br>cerevisiae.                                            | tein are required for release of glucose repression in Sacch                                                    | naromyces 📓 👱              |
| Zebrafish C. elegans                     | The SIP1 gene of Saccharomyces cerevisiae is a carbo<br>multicopy suppressor of growth defects associated with | n-catabolite-specific negative regulator of GAL gene transon<br>impaired <b>Snf1</b> p protein kinase activity. | cription and acts as a 📓 📥 |
| Arabidopsis                              | We show that different sequences of Reg1 interact with                                                         | Gic7 and Snf1.                                                                                                  |                            |
| S. Cerevisiae 🔽                          | In two-hybrid assays, one SNF4 mutation enhances the                                                           | e interaction between Snf4 and Snf1.                                                                            | <b>■</b> ±                 |
| E. Coli 📃                                | Previously, we identified SIP1 and SIP2 as proteins that                                                       | t interact with SNF1 in vivo by the two-hybrid system.                                                          | <b>_</b> ±                 |
| Filter and options                       | Previous experimental evidence had indicated that Reg                                                          | 1 might target GIc7 to nuclear substrates such as the Snf                                                       | 1 kinase complex. 🛛 📓 圭    |
| Gene Model                               | The catalytic subunits of Arabidopsis SnRKs, AKIN10 a<br>yeast.                                                | nd AKIN11, interact with Snf4 and suppress the snf1 and                                                         | snf4 mutations in          |
| Print version<br>Help                    | active                                                                                                         | association is greatly enhanced under glucose-limiting con                                                      |                            |
|                                          | We show that SNF4 binds to the SNF1 regulatory doma                                                            | ain in low glucose, whereas ir Hoffmann Vale                                                                    | encia Nat Genet            |

2, 2004 onso Valencia CNB-CSIC

## **Datamining for Chromosomal Aberrations**

## examples from H-CAD

#### Source

Source: MEDLINE, PMID=10862084 The mutational spectrum consisted of 25 nonsense, 12 frameshift, 19 splice mutations, six missense and/or small in-frame deletions, one deletion of the entire NF1 gene, and a translocation t(14;17)(q32;q11.2). Our data suggest that exons 10a-10c and 37 are mutation-rich regions...

#### Source: MEDLINE, PMID=2562822

Fine structure DNA mapping studies of the chromosomal region harboring the genetic defect in neurofibromatosis type I. To better map the location of the von Recklinghausen neurofibromatosis (NF1) gene, we have characterized a somatic cell hybrid designated 7AE-11... The panel included a hybrid (NF13) carrying a der(22) chromosome that was isolated from an NF1 patient with a balanced translocation, t(17;22) (q11.2;q11.2). Fifty-three of the cosmids map into a region spanning the NF13 **Information Extracted** 

## translocation t(14;17)(q32;q11.2) t(17;22) (q11.2;q11.2)

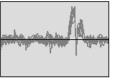
breakpoint 17q11.2

phenotype

neurofibromatosis type l

gene

NF1 gene


#### 🛯 Netscape 6

| UL |  |  |
|----|--|--|



Single Words Profiles Authors Legend Pairs of Words Sentences

|                 |                                                                                                                                                                                                                    | Word                                                                                                              | Zscore         | Freq.        | Mean Freq.           |        |          |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------------|--------|----------|--|--|
|                 |                                                                                                                                                                                                                    | cdc12                                                                                                             | 002.84605      | 008.83978    | 000.88398            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | septation                                                                                                         | 002.84605      | 007.73481    | 000.77348            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | swi6                                                                                                              | 002.84605      | 006.62983    | 000.66298            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | filament                                                                                                          | 002.84605      | 006.07735    | 000.60774            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | res1                                                                                                              | 002.84605      | 005.52486    | 000.55249            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | profilin                                                                                                          | 002.84605      | 004.97238    | 000.49724            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | clb                                                                                                               | 002.84605      | 004.97238    | 000.49724            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | cdc23                                                                                                             | 002.84605      | 004.97238    | 000.49724            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | sct1                                                                                                              | 002.84605      | 004.41989    | 000.44199            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | res2                                                                                                              | 002.84605      | 004.41989    | 000.44199            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | notch                                                                                                             | 002.84605      | 004.41989    | 000.44199            |        |          |  |  |
|                 |                                                                                                                                                                                                                    | mcb                                                                                                               | 002.84605      |              | 000.44199            |        |          |  |  |
| 08244379        | (Glover TW) - "Statistical analysis of the combined data suggests that the order of<br>markers in the BRCA1 region is cen-THRA1-TOP2-GAS-0F2-17HSD-248yg9-RNU<br>2-0F3-PPY/p131-EPB3-Mfd188- WNT3-H0X2-GP3A-tel. " |                                                                                                                   |                |              |                      |        |          |  |  |
| <u>10066792</u> | top2(S740W)                                                                                                                                                                                                        | - "In addition to resistar<br>induced novel DNA clea<br>nd mitoxantrone. "                                        |                |              |                      | in, 00 | 18.67451 |  |  |
| <u>01322791</u> |                                                                                                                                                                                                                    | 'AMSACRINE AND ETOP<br>SSING DNA TOPOISOMI                                                                        |                | RSENSITIVI   | TY OF YEAST CELLS    | s oo   | 18.44646 |  |  |
| <u>08395511</u> |                                                                                                                                                                                                                    | THE TOP2-5 MUTANT OF<br>ISTANT TO ETOPOSIDE                                                                       |                |              | SE II ENCODES AN     | 00     | 8.33303  |  |  |
| <u>07757979</u> |                                                                                                                                                                                                                    | (Andoh T) - "Bisdioxopiperazines such as ICRF-159 and ICRF-193 have been shown to inhibit DNA topoisomerase II. " |                |              |                      |        |          |  |  |
| <u>07657608</u> |                                                                                                                                                                                                                    | n prokaryotic type II top<br>to quinolones frequent                                                               |                |              |                      |        | 8.23140  |  |  |
| <u>01320012</u> | cyclopropyl-4                                                                                                                                                                                                      | The quinolone CP-115,9<br>I- quinolone-3-carboxyli<br>otent activity against eu                                   | ic acid) repre | esents a nov | el mechanistic class |        | 18.17069 |  |  |



Cluster Name: B\_CLUSTER Units of Information: 181 Genes: 11 Genes with units of information: 11 Genes with no units of information: 0

Pairs of Words Sentences

Single Words Profiles Authors Legend

|                 | Word                                                                                                                                                                                                                                                                                                     | Zscore                   | Freq.                | Mean Freq.            |         |           |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------|---------|-----------|--|--|--|
|                 | bud neck                                                                                                                                                                                                                                                                                                 | 002.84605                | 007.73481            | 000.77348             |         |           |  |  |  |
|                 | type cyclin                                                                                                                                                                                                                                                                                              | 002.84605                | 005.52486            | 000.55249             |         |           |  |  |  |
|                 | septum formation                                                                                                                                                                                                                                                                                         | 002.84605                | 004.41989            | 000.44199             |         |           |  |  |  |
|                 | mother bud                                                                                                                                                                                                                                                                                               | 002.84605                | 003.86740            | 000.38674             |         |           |  |  |  |
|                 | specific cyclins                                                                                                                                                                                                                                                                                         | 002.84605                | 003.31492            | 000.33149             |         |           |  |  |  |
|                 | neck filament                                                                                                                                                                                                                                                                                            | 002.84605                | 003.31492            | 000.33149             |         |           |  |  |  |
|                 | actin cytoskeleton                                                                                                                                                                                                                                                                                       | 002.84605                | 003.31492            | 000.33149             |         |           |  |  |  |
|                 | start gene                                                                                                                                                                                                                                                                                               | 002.84605                | 002.76243            | 000.27624             |         |           |  |  |  |
|                 | spore formation                                                                                                                                                                                                                                                                                          | 002.84605                | 002.76243            | 000.27624             |         |           |  |  |  |
|                 | multinucleate cells                                                                                                                                                                                                                                                                                      | 002.84605                | 002.76243            | 000.27624             |         |           |  |  |  |
|                 | filament proteins                                                                                                                                                                                                                                                                                        | 002.84605                | 002.76243            | 000.27624             |         |           |  |  |  |
|                 | complete cytokinesis                                                                                                                                                                                                                                                                                     | 002.84605                | 002.76243            | 000.27624             |         |           |  |  |  |
| <u>)8834798</u> | respectively, display disorganized actin patches in all cells. cdc12 and cdc15 mutants<br>display disorganized actin patches during mitosis, but normal interphase actin<br>patterns. cdc4 and rng2 mutants display disorganized actin cables during mitosis, but<br>normal interphase actin patterns. " |                          |                      |                       |         |           |  |  |  |
| <u>18682866</u> | (Albright CF) - "Overexpression of<br>continues leading to multinucleate                                                                                                                                                                                                                                 |                          | ; cytokinesis        | , but cell cycle prog | ression | 001.73227 |  |  |  |
| <u>)7798319</u> | (Yanagida M) - "BYPASSING ANAP<br>REQUIREMENT OF CUT9+ TO INITI                                                                                                                                                                                                                                          | Phase by Fi<br>Ate Anaph | SSION YEAS<br>Ase. " | T CUT9 MUTATION:      |         | 001.72445 |  |  |  |
| <u>)9490631</u> | (Hagan IM) - "F-ACTIN DISTRIBUTION AND FUNCTION DURING SEXUAL<br>DIFFERENTIATION IN SCHIZOSACCHAROMYCES POMBE. "                                                                                                                                                                                         |                          |                      |                       |         |           |  |  |  |
| <u>10353895</u> | (Murray AW) - "Defects in microtubule polymerization, spindle pole body duplication,<br>microtubule motors, and kinetochore components all activate the MAD-dependent<br>checkpoint. "                                                                                                                   |                          |                      |                       |         |           |  |  |  |
| <u>16490749</u> | (Jelke E) - "Unique contour views of delocalized septa were exposed by freeze-fracturing. "                                                                                                                                                                                                              |                          |                      |                       |         |           |  |  |  |
| <u>)8039497</u> | (Simanis V) - "Overexpression of p<br>mitosis and then undergo multiple<br>"                                                                                                                                                                                                                             |                          |                      |                       |         | 001.62911 |  |  |  |

| ww.pdg.cnb.uam                                            | n.es                          | Prote                                  | in De                              | esign Gro                                         | oup                   | CNB-                              | CSIC<br>Miguel                              | A. Peñalva                                        |                                                   |                     |
|-----------------------------------------------------------|-------------------------------|----------------------------------------|------------------------------------|---------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------|
| Manuela Helmer-Cit                                        |                               | e <b>n Brunak</b><br>I, Copenhagen     |                                    |                                                   |                       | os Martínez<br>- C N B<br>eetwork |                                             | IC<br>Sanchez                                     | SH3<br>B. Distel, A                               | Amsterdam           |
| <i>U. TorVergata,</i><br>Rita Casadio<br>Pierro Fariselli | Pro<br>Osvaldo G              | otein Structu<br>Graña                 | David o                            | ediction<br>de Juan                               |                       | Ana Ro<br>Arrays<br>apopto        | ojas<br>s /                                 | José Manue<br>SH3 bindin                          | iel Gonzalez<br>ng sites                          | EC V FP             |
| U. Bologna<br>Burkhard Rost<br>Columbia U., NY            | Michael Ti<br>Family alia     | ress<br>UBL                            | NFUN                               | in interactions<br>BioSapie<br>NoE EBI<br>EC VIFP |                       |                                   |                                             | Protein<br>Design<br>Ramón Alons<br>Arabidopsis 1 | so <mark>CSIC</mark>                              | es, CNB-            |
| Christos Ouzounis<br>EBI-EMBL, Cambridge                  | Manuel<br>Genome Bacteria     |                                        |                                    | José María Fo<br>Database des                     | Fernandé              | éz                                |                                             | factors                                           | Р                                                 | Planet<br>AIPs      |
| lan Daviaa                                                | analysis<br>Federico          | o Abascal E<br>n prediction            | COMBIO<br>EMBL<br>EC VIFP<br>CICYT | Systems, DB<br>resear<br>Angel Carr<br>System ma  | 3 and G<br>rch<br>rro | E                                 | R<br>EBI                                    | MBLO<br>VFP                                       |                                                   | $\overline{\gamma}$ |
| (                                                         | Victor de Lorenzo<br>CNB-CS/C |                                        | biotech                            |                                                   |                       |                                   | EC<br>ristian Blaschke<br>formation extract | )                                                 | Institu                                           |                     |
| nio del Sol<br>id Jones) Fausto<br>U. Barc                | o Edgarth<br>rcelona          | <b>R. Apweiller</b><br>EBI-EMBL        | r                                  | David Guijas<br>Biodegradation I                  | nets                  | Eduardo L<br><i>Biochemic</i>     |                                             | ORIEL<br>EMB0                                     | de                                                |                     |
| Centro de<br>Astrobiología                                |                               | L. Hirschmar<br>A. Yeh<br><i>Mitre</i> | an 🕞                               | LMA<br>ioinformátic                               | a                     |                                   | larting Krallinge<br>locument cluster       |                                                   | Bioint                                            | formati             |
| Ugo Bastolla<br>Protein stability                         |                               | IVIII C                                |                                    | Javier Tamames<br>Genome analysis                 |                       |                                   | María Padrón<br>Machine learni              | ng                                                |                                                   |                     |
| Roel                                                      |                               |                                        |                                    | Juan Carlos<br>Array data                         |                       |                                   | Robert Hoffm<br>I.E. Biomedici              | iann Ji<br>ine Ji                                 | loaquin Dopaz<br>lavi <er herrerc<br="">CNIO</er> |                     |





**30 workshop: A critical assessment of text mining methods in** ecular biology, Granada 28. Mar - 01. April v.pdg.cnb.uam.es/BioLINK/workshop\_BioCreative\_04/ n ISMB / 3rd ECCB Conference: Text mining and Genome function fiction SIGs, Glasgow, July 31st-August 4th ://www.iscb.org/ismbeccb2004/

ona ESF workshop: Molecular Interactions: New frontiers for putational methods, Verona, July 3-8 v.functionalgenomics.org.uk

rnational Joint Workshop on Natural Language Processing in nedicine and its Applications 2004, 28-29 August Switzerland //www.genisis.ch/~natlang/JNLPBA04/

## www.almabioinfo.c

