ECCB'12 Tutorial 4

Inferring genetic diversity from nextgeneration sequencing data: Computational methods and biomedical applications

Niko Beerenwinkel Karin Metzner Volker Roth

Basel, September 9, 2012

About us

Karin Metzner University Hospital Zurich

Volker Roth University of Basel

Computational Biology

Virology

Computer Science

Goals

- learn about important biomedical applications of genetic diversity estimation
 - cancer: intra-tumor diversity
 - infectious diseases: intra-patient viral diversity
- understand the tasks of SNV calling and haplotype reconstruction
- appreciate the opportunities and limitations of different NGS technologies for diversity estimation
- survey existing approaches and software
- understand the basic computational and statistical principles underlying haplotype inference

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Schedule

- 9:00 Introduction, Motivation, Case Studies, NGS Technology
- 10:30 Coffee break
- 11:00 Local Diversity Estimation
- 12:30 Lunch
- **13:30 Global Diversity Estimation**
- 15:00 Coffee break
- 15:30 Comparative Assessment of Methods, Demonstration of Case Studies
- 17:00 End of workshop

Re.

Main references

- Beerenwinkel N and Zagordi O (2011). Ultra-deep sequencing for the analysis of viral populations. *Current Opinion in Virology* 1:413–418. doi: <u>10.1016/j.coviro.2011.07.008</u>
- Beerenwinkel N, Günthard HF, Roth V and Metzner KJ (2012). Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. *Frontiers in Microbiology* 3:329. doi: 10.3389/fmicb.2012.00329

ECCB 2012 Tutorial 4

Introduction: Motivation, Case Studies, NGS Technology

Karin J. Metzner

Division of Infectious Diseases and Hospital Epidemiology

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

The global view on diversity

The tree of life

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

domain	eukaryote	unassigned
kingdom	animal	unassigned
phylum	chordate	unassigned
class	mammalia	unassigned
order	primate	unassigned
family	hominidae	retroviridae
genus	homo	lentivirus
species	homo sapiens	HIV-1 (example 2:
individuum	example 1	in one host)

Case studies/examples

 Genetic diversity in an individuum: intra-tumour diversity

Genetic diversity of a species in a defined environment: intra-patient diversity of HIV-1

Copyright 2004-2012 University of Washington, UW Medicine Pathology

HR Gelderblom et al., Virology 1987

Genetic diversity _ divergence

 Genetic diversity: genetic characteristics at a certain time point

 Genetic divergence: changes in genetic diversity over time

HIV-1 population dynamics within a host

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

The needs of the many

M Kohn, Nature 2008

Chances and risks of evolution

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Chances and risks of evolution

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Survival of populations

HIV-1 population dynamics within a host mainly driven by immune responses

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Viral quasispecies

- quasispecies model of molecular evolution (M Eigen and P Schuster, 1979)
- selection pressure on the whole population rather than on single individuums
- viral quasispecies = viral population = mutant cloud = swarm
 → all virus variants within one host interconnected by mutations
- virus variant = viral haplotype

Mutation rate correlates to genome size

adapted from S Gago et al., Science 2009

Error threshold

cytomegalovirus poliovirus 4e-06 120 0 bfu ber RNA molecule 50-95 1e-06 specific infectivity (% wt) 100supernatant Ó RNA genome intracellular 80. . 0 60-LI50 40 0 20-0 0 12 0 2 8 10 14 16 6 0 0 mutations/RNA genome 00 10 0.002 0.0005 0.001 0.0015

S Crotty et al., PNAS 2001; A Grande-Pérez et al., PNAS 2005

Mutation frequency

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

Case studies/examples

- Genetic diversity in tumors: Detecting low-frequency singlenucleotide variants (SNVs)
- Genetic diversity in virus populations: Local and global haplotype reconstruction

Cancer is a somatic evolutionary process

JJ Salk et al., Annu Rev Pathol 2010

Intra-tumor diversity

A Marusyk et al., Nat Rev Cancer 2012, CC Maley et al., Nat Genet 2006

Intra-patient genetic diversity of tumors

- Evolutionary dynamics
 - mutation rate can be elevated (genetic instability)
 - high turn-over
 - large population size
- Disease progression
- Drug resistance

Cancer: Case study

- renal cell cancer
 - Three matched tumour-normal samples
 - one case with biopsies from multiple lesions
- Illumina genome sequencing
- detection of low-frequency single-nucleotide variants (SNVs)

3x Tumour-normal: Tumour 1 Tumour 2 Tumour 3 1x Multiple lesions Primary 1 Primary 2 Metastasis

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

Advantages of viruses to study evolution

- low genome size
- rapid replication cycles
- broad knowledge available in viral proteins, their functions, pathogenesis, virus-host interactions, etc.
- established cell culture and animal models available
- huge amount of sequence data

HIV-1 genome

- single-stranded, plus-sense RNA genome
- organized in a highly sophisticated way

ViralZone www.expasy.org/viralzone, Swiss Institute of Bioinformatics

Evolution and diversity of HIV

The natural variability of HIV-1 is extensive

B Korber et al., BMB 2001

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

HIV: Case study

- mixture of 10 well characterized patients' HIV-1 clones ('haplotypes')
 - O Zagordi et al., Nucl Acids Res 2010
- the data set is publicly available
 - https://wikibsse.ethz.ch/display/ShoRAH/Data
- 454 sequencing of HIV-1 pol (~1'500 bp)
- Local and global haplotype reconstruction

Local diversity of the original haplotypes

average distance of 6.8% among the 45 pairs

O Zagordi et al., Nucl Acids Res 2010

Frequencies of the original haplotypes

- mixture of 10 haplotypes (%)
 - 50
 - 25
 - 12.5
 - 6.25
 - 3.125
 - 1.563
 - 0.781
 - 0.391
 - 0.195
 - 0.098

O Zagordi et al., Nucl Acids Res 2010

HIV drug resistance, individualized treatment

HIV-1 drug resistance

VA Johnson et al., Top HIV Med 2009

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

Historical development of next-generation sequencing technologies

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Cumulative data volume in base pairs over time

The International Nucleotide Sequence Database Collaboration, NAR 2010

Biological sample to genotype

N Beerenwinkel *et al.*, Frontiers Microbiol 2012

454 Life Sciences/Roche

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

ML Metzker, Nature Review Genetics 2010

1-2 million template beads loaded into PTP wells

Illumina/Solexa

ML Metzker, Nature Review Genetics 2010

Pacific Biosciences/PacBio RS

ML Metzker, Nature Review Genetics 2010

Oxford Nanopore Technologies

Oxford Nanopore Technologies

Comparison of next-generation sequencing platforms

454/Roche GS-FLX: up to 1'000'000 sequences/run length: 400-700 bp/read

Illumina HiSeq 2000: up to 1'500'000'000 seq./run length: 2x100 bp/read

ABI 5500 SOLiD : up to 900'000'000 seq./run length: 50-75 bp/read

Pacific Biosciences RS: up to 800'000 seq./run length: ~1'500 bp/read

Ion Torrent PGM: up to 5'000'000 seq./run length: 35-200 bp/read

Helicos HeliScope: up to 800'000'000 seq./run length: 25-55 bp/read

Topics

- genetic diversity
 - definitions and motivation
- case studies
 - cancer
 - viruses
- NGS technologies
 - techniques (mainly 454 and Illumina)
 - error pattern and quality scores

Error sources on the way from a biological sample to a pre-NGS sample

N Beerenwinkel *et al.*, Frontiers Microbiol 2012

NGS platform dependent errors: 454 Life Sciences/Roche

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

1–2 million template beads loaded into PTP wells

ML Metzker, Nature Review Genetics 2010

Pyrosequencing errors

Individual read insertion error rate Individual read deletion error rate Individual read substitution error rate All errors 0.44% 0.15% 0.004% 0.60%

• In long homopolymeric regions, linearity between signal intensity and number of nucleotides incorporated fails.

M Margulies et al., Nature 2005; S Balzer et al., Bioinf 2010

Error rates increase with read length

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Phasing limits

phasing = "maintaining synchronous synthesis among all the identical templates of the ensemble"

Figure 5 Read-length and phasing. For ensemble sequencing methods, thousands of identical copies of a DNA sequence are synthesized together. Whenever synthesis lags behind or steps ahead, signal is lost and background increases. Ultimately, this limits the length over which synthesis can be read.

CW Fuller et al., Nature Biot 2009

NGS platform dependent errors: Illumina/Solexa

ML Metzker, Nature Review Genetics 2010

NGS platform dependent errors: Pacific Biosciences/PacBio RS

NGS platform dependent errors: Oxford Nanopore Technologies

exonuclease sequencing

strand sequencing

 \rightarrow 0.1 - 4% raw read error rates are reported in press releases \rightarrow error sources?

Oxford Nanopore Technologies

A lot of reads are incorrect

- Let us assume (454 data)
 - a sequencing error of 0.1% per base pair, and
 - an average read length of 500 bp
- Then the fraction of reads with at least one error is

$$1 - (1 - 0.001)^{500} = 0.394$$

• Thus, ~40% of the reads are incorrect!

Thanks for your attention

Local Diversity Estimation

Niko Beerenwinkel, ETH Zurich

ni ko. beerenwi nkel@bsse. ethz. ch

ECCB'12 Tutorial 4 Inferring Genetic Diversity from Next-generation Sequencing Data: Computational Methods and Biomedical Applications

Niko Beerenwinkel, Karin Metzner, Volker Roth: ECCB'12 Tutorial on Genetic Diversity

1111

Spatial scales of diversity estimation

Beerenwinkel et al (Front Microbio 2012)

This session: SNVs and local diversity

CCTGAAATCACTCTATGGCA GAAAACACTCTATGGCAACG local ATCACTCTTTGGCAAGGCCG TCACTCTATGCCAACGACCC CTCTTTTGGGCACCGACCCA CTATGGTAACGACCCATCGT TATGOCAACGAGCCATCGTC SNV ATGGCACGGACCCATCCC TGGCAACGACGCATCGT CAACGACCCATCGTCACAAT CAACGACGCATCGTCACGAT AACGACCCTTCGTCACAATA CGACCCATCGTCTCAATAAA GCATCGTCACAATATAGAGA CATCGTCACAAAATAGATAG TCGTCACAATAAAGATAGGG **TCACAATAAAGATGGGG** CAATAAAGATAGGG **AATAAGGATGGGG** ATAGATAGGA

Beerenwinkel et al (Front Microbio 2012)

Overview

Overview

Reumers et al (Nat Biotech 2011), Skums et al (BMC Bioinformatics 2012)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Alignment-free, k-mer-based read error correction

- k-mer = substring of length k
- Idea: Rare ("weak") k-mers are likely to contain errors
- <u>KEC</u> algorithm:
 - 1. Calculate k-mers and their frequencies, called k-counts.
 - 2. Determine the threshold k-count which distinguishes solid k-mers from weak k-mers.
 - 3. Find error regions.
 - 4. Correct the errors in error regions.

• Example:

Sample:	M1	M2	M3	M4	M5
No. of reads before error correction:	4220	4222	4418	4344	4426
No. of unique/unique maximal reads after correction:	306/8	502/18	385/8	483/9	179/2

Skums et al (BMC Bioinformatics 2012)

Overview

Read alignment (mapping)

 Task: Find the location of each read in a given reference genome in the presence of errors

- dominated by sequencing errors, genetic diversity of the sequenced species, and uncertainty in reference genome assembly
- By comparison, "traditional alignment"
 - finds matches in (remote) homologous sequences in large databases (Smith-Waterman, BLAST, FASTA)
 - uses evolutionary models (DNA/protein substitution models, phylogenetic trees)

millions to billions

Read mapping

- Challenges:
 - many short reads
 - Iong genomes
 - errors
 - repetitive DNA
- Read mappers are based on indexing techniques to locate reads, followed by high-quality local alignments.
- Around 50 mapping programs currently available
 - see wikipedia list

Trapnell & Salzberg (Nat Biotech 2009)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Read mapping of diverse populations at high coverage

Goals:

- 1. Multiple alignment of all reads
- 2. Error correction

Strategies:

- Mapping to reference genome
- Mapping to consensus sequence
- Pairwise local alignments (Smith-Waterman) to reference or consensus
- Multiple sequence alignment (MSA)
- De novo assembly
- Account for quality scores, error patterns
- In practice, strategies are often combined.

MSA of reads – snapshot

T . G G . A . C . A	T - AAA - G - C -	T . A . TA . 66 . TA	G . A . G . T . A .	TTA-GTA-GG-	A - CC - TA - C - A - CC - 1	- G. T. C. AA. A. C A	L
T . GG . A . C . A	T - AAA - G - C -	T . A . TA . 66 . TA	G . A . G . T . A .	TTA . GTA . GG .	A - CC - TA - C - A - CC - 1	- G. T. C. AA. A A	
T . GG . A . C . A	T - AAA - G - C -	T - A - TA - 66 - TA	. G . <mark>A</mark> . <u>G</u> <u>A</u> .	TTA-GTA-GG-	ACCC-TA-C-A-CC-T	- G - T - C - AA - A - C A	-
T - G G - A - C - A	T A A - G - C -	T - A - TA - 66 - TA	. 🔓 . 🗛 . 🥝 . 🕇 . 🗛 .	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C A	-
T · G G · A · C · A · ·	T · AAA · G · C ·	T · A · TA · GG · TA	• G • A • G • T • A •	TTA . GTAGGG .	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C A	
T . GG . A . CGA	T - AAA - G - C -	T - A - TA - GG - TA	• 📴 • 🗛 • 🦉 • 🕇 • 🗛 •	TT	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C A	
T • 00 • A • C • A • • 1	T - AAA - <mark>O</mark> - C -	T · A · T A · 00 · T A	· 💊 • 🗛 • 🗞 • 🕇 • 🗛 •	TT OTA - OO -	A - CC - TA - C - A - CC - 1	- 0 - T - C - AA - A - C A	-
TAGG · A · C · AC ·	T - AAA - <mark>G</mark> - C -	T · A · TA · GG · TA	· 🔓 - 🗛 - 🦉 - 🕇 - 🗛 -	TTA-GTA-GG-	A · CC · TA · C · A · CC · 1	- <mark>6</mark> - T - C - AA - A - C A	•
T · G G · A · C · A · ·	T • AAA • • • C •	T - A - T A - <mark>G G</mark> - T A	· G · A · G · T · A ·	TTA-GTA-GG-	A - CC - TA - C - A - CC - 1	- G - T - C - AA - A - C A	-
T · G G · A · C · A C ·	T · AAA · G · C ·	T · A · T A · G G · T A	· <mark>G · A · G · T</mark> · A ·	TTA - GTA - GG -	A - CC - TA - C - A - CC - 1	- G - T - CGAA - A - C A	÷
TGGG·A·C·A··	T · AAA · G · C ·	T · A · TA · GG · TA	• G • ACG • T • A •	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	• • • • • • • • • • • • • • • • • • •	-
T • G G • A • C • A • •	T - AAA - <mark>G</mark> - C -	T · A · TA · GG · TA	• <mark>G T A • G • T • A</mark> •	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	• G • T • • • A A • A • C • • A	ŀ
T · G G · A · C · A C ·	T · AAA · G · C ·	T - A - TA - 66 - TA	· G - A - G - T - A -	TTA- GTA- GG.	A - CC - TA - C - A - CC - 1	- G. T. C. AA. A. C A	ŀ
· · · · · · · · · · · · · · · · · · ·	I · AAA · GIC ·	T · A · TA · 66 · TA	· G · A · G · T · A ·	TTA- GTA- GG-	A - CC - TA - C - A - CC - 1	· G · T · C · AA · A · C · · A	1
••• GG • A • C • A ••	- AAA · G · C ·	T · A · TA · · G · TA	CG · A · G · T · A ·	TTA- GTA- GG-	A - CC - TA - CGA - CC - T	- G - T - C - AA - A - C A	-
· · · · · · · · · · · · · · · · · · ·	I · AAA · G · C ·		· · · · · · · · · · · · · · · · · · ·	TTA · GTA · GG ·	A - C C - T A - C - A - C C - 1	- G - T - C - AA - A - C A	
· · · · · · A · C · A · ·	- AAA - G - CG	T . A . TA . 66 . TA	G . A . G . T . A .	TTA- 9TA- 99-	A- CC - TA- C- A- CC-	- G. T. C. AA. A. C A	Ľ
A. U.A	AAA-G-L-	1 - A - TA - 66 - TA	. G . A . G . I . A .	TTA-BTA-GGT	A- CCGTA- C- A- CC-	AU. 1. U. AA. A. U A	r
· · · · · · · · · · · · · · · · · · ·	- AAA - 6 - C -	1 · A · TA · 66 · TA	. G . A . G . I . A .	TTA-GTA-GG-	A- CC- TA- C- A- CC- I	- G. I. C. A. A. C A	1
		T A TA AC TA					
	L AAA A C	T A TA AC TA		TTACATA GO.			
	. AAA A C			TTA ATA CA			
		T. S. TA. 66. TA		TTA GTA GA	a. cc. Ta.c.a. cc. T		C
		T. S. TA. 66. TA	G. A. G. T. A.	TTA BTA GA	A. CC. TA.C. A. CC. 1		
	· · · · · · · · · · · · · · · · · · ·			TTA. GTA. GG.	A. CC. TA.C. A. CC. T		
		TA. 66. TA	. G . A . G . T . A .	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	. G. T. C. AA. A. C A	
		TA. 66.TA	. G . A . G . T . A .	TTA-GTA-GG-	A - CC - TA - C - A - CC - 1	T. C. AA. A. C A	
			. G . A . G . T . A .	TTA.GTA.GG.	A - CC - TA - C - A - CC - 1		
	.		T . A .	TTA TA	A - CC - TA - C - A - CC - 1	- 0 - T - C - AA - A - C A	
		TA	. G . A . G . T . A .	TTA-GTA-GG-	A - CC - TA - C - A - CC - 1	- G - T - C - AA - A - C A	
			. <mark>6 . A</mark> . <mark>6 . T</mark> . A .	TTA-GTA-GG-	A · CCTTA · C · A · CC · I	- G - T - C - AA - A - C A	-
			. <mark>G . A . G . T</mark> . A .	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C - GA	-
			- 📴 - 🗛 - 🔂 - 🕇 - 🗛 -	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C A	-
			<mark>T</mark> . <mark>A</mark> .	TTA-GTA-GG-	A - CC - TA - C - A - CC - T	- G - T - C - AA - A - C A	-
			<mark></mark> . <u>A</u> .	TTA. GTA. GG.	A. CC. TA. CGA. CC. 1	. G. T. C. SS. S. C S	

Example: HIV env gene

- Locate reads by k-mer matching on reference (template) sequence (here: HIV-1 HXB2)
- Build MSA in windows of size 70nt with overlap 20nt
- 3. Generate in-frame consensus sequences, concatenate
- 4. Align reads locally to consensus sequence (Smith-Waterman)
- 5. Remove indels causing frameshifts

Archer et al (PLoS Comput Biol 2010)

Read mapping improves with consensus over reference template sequence

Archer et al (PLoS Comput Biol 2010)

Overview

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SNV calling

CCTGAAATCACTCTATGGCA GAAAACACTCTATGGCAACG ATCACTCTTTGGCAAGGCCG TCACTCTATGGCAACGACCC **CTCTTTTGGGCACCGACCCA** CTATGGTAACGACCCATCGT TATGGCAACGAGCCATCGTC **SNV** ATGGCACGGACCCATCCCC TGGCAACGACGCATCGTC CAACGACCCATCGTCACAAT CAACGACGCATCGTCACGAT AACGACCCTTCGTCACAATA CGACCCATCGTCTCAATAAA GCATCGTCACAATATAGAGA CATCGTCACAAAATAGATAG TCGTCACAATAAAGATAGGG TCACAATAAAGATGGGG CCAATAAAGATAGGG AATAAGGATGGGG ATAGATAGGA

Beerenwinkel et al (Front Microbio 2012)

SNV detection in a mixed sample

- Let q be the per-site error rate.
- The number of errors at position i is

 $X_i \sim \text{Binom}(n_i, q)$

where n_i is the coverage.

 $X_i \sim \mathsf{Pois}(\lambda_i)$

• With $\lambda_i := n_i q = E[X_i]$, approximately,

For calling an allele observed x times, consider

$$P(X_i \ge x) = 1 - \sum_{k=0}^{x-1} \frac{\lambda_i^k e^{-\lambda_i}}{k!}$$

SNV detection via comparative sequencing

- Task: For each allele, decide whether its frequency in the tumor is higher than in normal control tissue.
- If so, the allele is called (i.e., likely to be a true biological variant), otherwise it is more likely to be an experimental error (i.e., noise).
- Requires a statistical framework for comparing allele counts

Position i

Simple approach (Varscan 2)

For each allele, Fisher's exact test on

Tumor	
3 16	3 / 16
Normal 1 18	

P = 0.34

Koboldt et al (Genome Res 2012)

Correct for multiple testing

Niko Beerenwinkel, Karin Metzner, Volker Roth: ECCB'12 Tutorial on Genetic Diversity

Independent Poisson distributions (vipR)

Allele count in tumor:

 $X_i \sim \mathsf{Pois}(\mu_i = n_i q)$

Allele count in normal control:

$$Y_i \sim \mathsf{Pois}(\lambda_i = m_i q)$$

For calling an allele observed x times in the tumor and y times in the control, consider

$$P(X_i - Y_i \ge x - y) = 1 - \sum_{k=-\infty}^{x-y-1} \text{Skel}(k \mid \mu_i, \lambda_i)$$

where Skel is the Skellam distribution.

3/16

Altmann et al (Bioinformatics 2011)

20

Strand specificity

 Sequencing errors often occur predominantly on one strand,

GTAAAAA...

- 5' GTAAAAGCGTATG 3'
- 3' CATTTTCGCATAC 5' ...CGCATAC

whereas true variants do not.

 $P_{\text{combined}} = \max(P_+, P_-)^2$

Altmann et al (Bioinformatics 2011), Gerstung et al (Nat Commun 2012)

Independent, but non-identical, error rates

- Let q_{ik} be the error rate at position i on read k.
- If E_{ik} indicates an error at position i on read k, $P(E_{ik} = 1) = q_{ik}$, then

$$X_i = \sum_{k=1}^{n_i} E_{ik}$$

is, in general, not binomial, but its distribution can be computed recursively using the discrete convolution formula.

In the special case that $q_{ik} = q_i$ for all reads k,

$$X_i \sim \text{Binom}(n_i, q_i)$$

Department of Biosystems Science and Engineering

Non-independent and non-identical error rates

- Let E_{iik} indicate the joint occurrence of errors at positions *i* and *j* on read *k*, $P(E_{ijk} = 1) = q_{ijk}$.
- Then the distribution of the number of joint errors

$$X_{ij} = \sum_{k=1}^{n_{ij}} E_{ijk}$$

can still be computed recursively using the discrete convolution formula.

- Positions *i* and *j* are *phased*.
- Software: V-Phaser

23

Position j

Phasing improves SNV calling

Macalalad et al (PLoS Comput Biol 2012)

Beta-binomial model (<u>deepSNV</u>)

• For each strand *s*, position *i*, and nucleotide *b*:

 $\Rightarrow Y_{s,i,b} \sim \text{BetaBin}(m_{s,i}, q_{s,i,b}, \alpha)$ $\mathbb{E}[Y_{s,i,b}] = m_{s,i}q_{s,i,b}$ $\text{Var}[Y_{s,i,b}] \approx m_{s,i}q_{s,i,b} + (m_{s,i}q_{s,i,b})^2/\alpha, \text{ and } \mathbb{CV} \approx 1/\alpha$

Minor allele frequency test

Overdispersion

Test data: Known mix of 5 clones, coverage 10⁵

Performance comparison

	SNV frequency					Errors	CPU time	
	10-1	10-2	10 ⁻³	10-4	10-5			Null model
Truth	101	46	57	44	36	5,740*		¹ 7
deepSNV FDR < 0.05	101	46	53	3	0	2	141 s	
deepSNV FWER < 0.05	99	46	49	0	0	0	141 s	0.01 -
VarScan ¹⁷ pileup2snp	96	42	26	32	8	472	361s†	1e-04 - ;; /
VarScan somatic	50	29	34	1	0	33	439s†	
CRISP ¹⁸	91	43	46	0	0	16	44h	1e-06
vipR ¹⁹	98	43	30	0	0	1	279s†	1e-06 1e-04 0.01 Combined P-value

Application: Renal cell carcinoma

Relative Frequency in Control

Application: Renal cell carcinoma

Evolutionary history

Overview

Local haplotype inference

CCTGAAATCACTCTATGGCA GAAAACACTCTATGGCAACG local ATCACTCTTTGGCAAGGCCG TCACTCTATGGCAACGACCC CTCTTTTGGGCACCGACCCA CTATGGTAACGACCCATCGT TATGOCAACGAGCCATCGTC **ATGOCACGGACCCATCCCC** TGGCAACGACGCATCGTCAC CAACGACCCATCGTCACAAT **CAACGACGCATCGTCACGAT** AACGACCCTTCGTCACAATA CGACCCATCGTCTCAATAAA GCATCGTCACAATATAGAGA CATCGTCACAAAATAGATAG TCGTCACAATAAAGATAGGG **TCACAATAAAGATGGGG** CCAATAAAGATAGGG **AATAAGGATGGGG** ATAGATAGGA

Beerenwinkel et al (Front Microbio 2012)

Phasing improves limit of detection

 In a simple model, *d* phased SNVs (i.e., a haplotype) of frequency *p* can be called correctly at an i.i.d. error rate *q*, if and only if *q^d < p*.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Local haplotype inference via read clustering

Beerenwinkel et al (Front Microbio 2012)

Probabilistic clustering

- We assume an i.i.d. error rate 1 – θ.
- Main problem: number of clusters (haplotypes) unknown
- Bayesian approach
 - Dirichlet process mixture (Chinese restaurant process)
 - Gibbs sampler

ATCCCCGTCCGTTCGAA

Zagordi et al (J Comput Biol 2010)

Likelihood

 The probability of observed reads r, given haplotype assignments c and haplotypes h, is

$$P(\mathbf{r} \,|\, \mathbf{c}, \mathbf{h}) = \prod_k heta^{m_k} \left(rac{1- heta}{|B-1|}
ight)^{m'_k},$$

$$egin{array}{ll} m_k &=& \displaystyle{\sum_{i,j} \mathbb{I}(r_{i,j}=h_{k,j})\mathbb{I}(c_i=k)} & ext{matches} \ m_k' &=& \displaystyle{\sum_{i,j} \mathbb{I}(r_{i,j}
eq h_{k,j})\mathbb{I}(c_i=k)} & ext{mismatches} \end{array}$$

where B is the alphabet size.

Chinese restaurant process

Finite mixture model, K < ∞

$$y_i \sim \sum_{j=1}^K \pi_j F(y_i \mid \theta_j)$$

$$y_i \mid c_i, \theta \sim F(y \mid \theta_{c_i})$$

 $c \mid \pi \sim \text{Discrete}(\pi)$
 $\theta_i \sim G_0(\theta)$
 $\pi \sim \text{Dir}(\alpha, M)$

Dirichlet process mixture, $K \rightarrow \infty$

$$y_i \mid \theta_i \sim F(y \mid \theta_i)$$

$$\theta_i \mid G \sim G(\theta)$$

$$G \sim \mathsf{DP}(\alpha, G_0(\theta))$$

$$P(c_i = c \mid c_{1:i-1}) \rightarrow \frac{n_{i,c}}{i - 1 + \alpha}$$
$$P(c_i \neq c_j \text{ for all } j < i \mid c_{1:i-1}) \rightarrow \frac{\alpha}{i - 1 + \alpha}$$

Example: 19 reads of length 3

Output: haplotypes, frequencies, posterior

Performance of haplotype reconstruction, ROC curve (control experiment of 10 cloned viruses)

Zagordi et al (Nucl Acids Res 2010)

Haplotype frequency estimation

Zagordi et al (Nucl Acids Res 2010)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Clustering flograms (<u>AmpliconNoise</u>)

Quince et al (Nat Meth 2009, BMC Bioinformatics 2011)

Software

Summary and discussion

- Preprocessing, uncertainty
- Direct SNV calling vs. local-to-SNV

ECCB 2012 Tutorial 4 Global Haplotype Assembly

Volker Roth, Department of Mathematics and Computer Science, University of Basel

Overview

Global Haplotype Assembly

Global Haplotype Assembly

Combinatorial assembly

- Network flow
 (Westbrooks et al, 2008)
- Minimal path cover (Eriksson et al, 2008)
- Greedy paths sampling (Prosperi et al., 2011, 2012)
- Graph coloring (Huang et al., 2012)
- well-studied graph-theoretic background.
- requires error correction prior to assembly.

Probabilistic assembly

- Integrating alignment (Jojic et al., 2008)
- Local-to-global mixture model (Prabhakaran et al., 2010)
- Modeling recombinants (Beerenwinkel et al., 2012)

- "integrated", no separate"hard" error correction.
- computational problems, approximations needed.

Overview

Combinatorial Assembly: Network Flow

Combinatorial Assembly: Read Graph

	$\downarrow \qquad \downarrow \qquad$	
Α	CCTGAAATCACTCTATGGCAACGACCCATCGTCACAATAAAGATAGGG	60%
В	CCTCAAATCACTCTTTGGCAACGACGCATCGTCACAATATAGATAG	30%
С	CCTCAAATCTCTCTTTGGCACCGACCCATCGTCCCAATAAAGATAGGG	10%
1	CCTGAAATCACTCTATGGCA	
2	GAAATCACTCTATGGCAACG	
3	ATCACTCTTTGGCAACGACG	
4	TCACTCTATGGCAACGACCC	
5	CTCTCTTTGGCACCGACCCA	
6	CTATGGCAACGACCCATCGT	
7	TATGGCAACGACCCATCGTC	
8	TTGGCACCGACCCATCGTCC	
9	TGGCAACGACGCATCGTCAC	
10	CAACGACCCATCGTCACAAT	
11	CAACGACGCATCGTCACAAT	
12	AACGACCCATCGTCACAATA	
13	CGACCCATCGTCACAATAAA	
14	GCATCGTCACAATATAGATA	
15	CATCGTCACAATATAGATAG	

Each path is a potential haplotype

Network Flow

- A HT h corresponds to a **path from source to sink** in the read graph.
- Each path can be viewed as a **flow** source \rightarrow {reads from h} \rightarrow sink.
- The value of the (circular) **flow** *f* through a read is the **number of haplotypes that contain the read**.
- Main idea: minimizing flow \rightsquigarrow most parsimonious HT assembly.

8

Quasispecies assembly via network flows

LP for Most Parsimonious Quasispecies Assembly:

Objective: Minimize **backflow** $f(sink, source) \rightarrow parsimonious: every unit of flow from a single HT should pass through (sink, source)$ **once**.

Subject to:

• Flow conservation:

• Each read covered by at least one haplotype

Extension: include **cost terms** for the individual flows.

Transitive Reduction of the Read Graph

- Edge $u \to w$ logically follows from edges $u \to v$ and $v \to w$.
- Drop $u \to w$ from consideration **no information**, any HT containing u and w will also have v.

Transitive Reduction (2)

 In transitively reduced read graph: reads u, v from HT h are connected by an edge u → v implies that there is no other read w from the same HT h with b_u < b_w < b_v.

Probability of an edge in the read graph

- **Prob**(read u from HT h starts at b_u) = N/(Lq).
- Event $(\Delta := b_v b_u > k) =$ event that $b_u + 1, \dots, b_u + k$ are not beginnings of reads from HT h.
- Random starting positions: $Prob(\Delta > k) =: p_k = (1 - N/(LQ))^k \approx \exp(-(kn)/(Lq)).$

Probability of an edge in the read graph (2)

- Intuition: if $u \to v$ is a "true" overlap in HT h, Δ should be small.
- For any two reads with overhang Δ ,

$$cost(u \to v) := 1/p_{\Delta} \approx \exp\left((\Delta n)/(Lq)\right)$$

measures the **implausibility** that $u \rightarrow v$ is a **true edge**.

Quasispecies assembly via network flows (ViSpA)

LP for Minimum Cost Quasispecies Assembly:

Objective: Minimize the total cost $= \sum_{e} \operatorname{cost}(e) f(e)$ over all edges e in the read graph.

Subject to:

• Flow conservation:

• Each read covered by at least one haplotype

Combinatorial Assembly: Path Cover

Quasispecies assembly as a minimal path cover

Theorem (Dilworth, 1950; Hopcroft and Karp, 1973) (1) Every minimal cover of the read graph has the same cardinality (2) A minimal path cover can be computed in time $O(N^3)$.

Chain decomposition

1000 reads from 5 haplotypes at 3% diversity

Chain decomposition

1000 reads from 5 haplotypes at 5% diversity

18

Chain decomposition

1000 reads from 5 haplotypes at 7% diversity

19

Haplotype frequencies: Generating reads from a (small) set of candidate haplotypes

Estimate haplotype frequencies π_h using the EM algorithm

Eriksson et al (PLoS Comput Biol 2008)

21

ShoRAH: Performance of haplotype reconstruction

Ten haplotypes at equal frequencies, varying distances

22

Overview Reads Error correction Filtering Alignment Local haplotype **SNV Combinatorial global Probabilistic global** haplotype reconstruction calling reconstruction haplotype reconstruction

Probabilistic Assembly: Mixture Model

PredictHaplo: Generative Model for Reads

Bayesian mixture model: assign **priors** on class proportions and component distributions, integrate out latent variables.

Infinite mixture model: allow infinite number of classes...

Component Distributions

Haplotype: position-wise multinomial probability tables θ :

- Parameters for k-th haplotype: $\boldsymbol{\theta}_k = (\theta_k^1, \dots, \theta_k^L)$
- Position-wise independence assumption: *i*-th read x_i ranging from position a to b drawn from k-th haplotype:

$$oldsymbol{x}_i \sim P(oldsymbol{x} | oldsymbol{ heta}_k) = \prod_{j=a}^b \mathsf{Mult}(heta_k^j)$$

Finite Mixture of Haplotypes

$$oldsymbol{\pi} \sim \mathsf{Dir}(rac{lpha}{K}, \dots, rac{lpha}{K})$$
 $oldsymbol{ heta}_k \sim G_0$
 $c_i \sim \mathsf{Mult}(oldsymbol{\pi})$
 $oldsymbol{x}_i \sim P(oldsymbol{x}_i | oldsymbol{ heta}_{c_j})$

Dirichlet Priors for Mixture Proportions

- Assignment variables $c_i \sim \text{Mult}_k(\pi)$.
- Dirichlet prior $\pmb{\pi} \sim \mathsf{Dir}(\pmb{\pi} | \pmb{lpha}) \propto \prod_{k=1}^K \pi_k^{\alpha_k 1}$

Interpretation: breaking a stick of length 1 into K = 3 parts

• Problem: don't want to specify fixed number of haplotypes... but what happens when $K\to\infty?$

Beta distribution

Infinite Mixtures

Infinite Mixtures: Inference

- Making it fast: truncate the process. Bound k from above by K_{max} ≫ "expected" K. Posterior estimates based on truncated process will be exponentially close to those based on the infinite process [Ishwaran & James, 2002].
- Use a **sampler**: Iterate
 - 1. draw θ_k from $p(\theta_k|\bullet)$ (all currently populated + 1 empty haplotype) 2. draw c_i from $p(c_i|\bullet)$, $i = 1, ..., n_{reads}$
 - 3. draw π from $p(\pi|\bullet)$ (all currently populated + 1 empty haplotype)
- This is a **Gibbs sampler** (a MCMC method). The samples will converge to samples from the true posterior $p(\theta, c, \pi | x, \bullet)$
- \bullet Here: all conditionals are in standard form \leadsto sampling is easy.

Gibbs Sampling

Assume you want to sample from a 2-dim Gaussian $p(a, b) \sim \mathcal{N}(a, b | \mu, \Sigma)$. You know that **conditionals of Gaussians are again Gaussians**, but you have forgotten how to sample from a 2-dim Gaussian.

Gibbs Sampling

Solution: run a Gibbs sampler: Iterate:

1. sample a from $p(a|b, \bullet) = \mathcal{N}(a|\mu', \Sigma')$ 2. sample b from $p(b|a, \bullet) = \mathcal{N}(b|\mu'', \Sigma'')$

9 S 4 Δ e \sim 0 5 0 1 2 3 4 6 а

Local to Global

- Mixture model works for fully and partially overlapping reads...
- ...but not for global reconstruction!

Global reconstruction

Extract do-not-link constraints

• Idea: Start with Iocal inference

 \sim extract local **do-not-link constraints** between reads:

- Local clusterings may be noisy ~> "soft" do-not-link constraints.
- Include constraints in mixture model \sim global reconstruction.

36

Constrained model

• Distribution of the reads:

$$p(\boldsymbol{x}_j|\boldsymbol{\pi},\boldsymbol{\theta}) = \sum_{k=1}^{K_{\max}} \pi_k p(\boldsymbol{x}_j|\boldsymbol{\theta}_k).$$

• Use constraints Ω to adjust parameters \rightsquigarrow read-specific!

 $c_i | \tilde{\boldsymbol{\pi}}^i \sim \text{Mult} (c_i | \tilde{\boldsymbol{\pi}}^i)$

where $\tilde{\pi}^i$ are the **constraint**adjusted class probabilities for the *i*-th read.

Constrained model: summary

Experiments on 454/Roche data for pol gene

Pol gene, Local Reconstructions

POL_local

Pol gene, Results

Actual and Reconstructed haplotypes for HIV POL and simulated experiments on **454/Roche reads**.

All values are in %. X denotes 'undetected haplotype'.

HIV POL	Actual	38.3	35.4	10.1	9.5	5.6	0.46	0.32	0.08	0.06	0.02
	Reconstructed	36.7	32.9	10.6	9.0	5.2	0.6	X	Х	Х	X
Simulation	Actual	50.8	24.3	12.6	6.3	3.0	1.6	0.8	0.4	0.25	0.06
	Reconstructed	50.4	24.3	12.5	6.3	3.0	2.0	0.8	Х	X	X

- Can detect haplotypes down to 0.5% frequency.
- Simulations agree perfectly with real data!

Probabilistic Assembly: Hidden Markov model

Hidden Markov model

Recombination

Jumping hidden Markov model

Many parameters \rightsquigarrow requires strong regularization

Zagordi, Töpfer et al (RECOMB 2012)

Example: 3 generators + 24 recombinants

Global Haplotype Assembly: Summary

Two main classes:

Combinatorial assembly

→ read graph, network flow, path cover, graph coloring etc.

- Sell-studied graph-theoretic background.
- requires error correction prior to assembly.

Probabilistic assembly

- → (infinite) mixture models, hidden Markov models etc.
- "integrated", no separate "hard" error correction.
- ③ flexible: easy to include constraints, recombinations...
- Computational problems, approximations needed.

General: **Reads must be long** enough to bridge conserved regions. Missing length **cannot be compensated by higher coverage.**

Global Haplotype Assembly: Summary (2)

Software packages:

Program	Method	URL
QuRe	read graph	https://sourceforge.net/projects/qure/
ShoRAH	read graph	http://www.cbg.ethz.ch/software/shorah
ViSpA	read graph	http://alla.cs.gsu.edu/ \sim software/VISPA/vispa.html
BIOA	read graph	https://bitbucket.org/nmancuso/bioa/
Hapler	read graph	http://nd.edu/ \sim biocmp/hapler/
AmpliconNoise	probabilistic	http://code.google.com/p/ampliconnoise
PredictHaplo	probabilistic	http://bmda.cs.unibas.ch/HivHaploTyper/
QuasiRecomb	probabilistic	http://www.cbg.ethz.ch/software/quasirecomb

ECCB'12 Tutorial 4 Inferring genetic diversity from next-generation sequencing data: Computational methods and biomedical applications

Comparative Assessment of Methods, Demonstration of Case Studies

Niko Beerenwinkel Volker Roth Karin Metzner

Read length versus depth of coverage

- Compare 10-clones mix between
 - 454/Roche (long reads, low coverage)
 - Illumina GA (short reads, high coverage)

Platform	PCR amplifi cation	Total reads	Reads mapped to protease (10-93)	Mapped read length (mean ± sd)	Reads included in the analysis	Error rate [%] (mean ± sd)
454/Roche	No	16,540	668	232 ± 18	668	0.59 ± 0.02
454/Roche	Yes	45,973	4,331	236 ± 18	4,331	1.09 ± 0.01
Illumina GA	No	12,559,696	1,505,619	36	11,835	0.17 ± 0.01
Illumina GA	Yes	12,242,508	1,346,481	36	8,904	0.38 ± 0.01

Local comparison

 Idea: Use region of highest diversity for Illumina-based local analysis.

Local comparison

- Higher sensitivity and specificity with Illumina in detecting 10 clones.
- Low-frequency haplotypes go undetected with low coverage.

Platform	PCR amplification	Method	07-5 6681	07-548 25	07-569 51	08-597 12	08-041 34	08-013 15	08-026 59	08-578 81	08-045 12	Total
454/Roche	No	ShoRAH	10.6	14.1	14.1	13.9	4.9	_		_	_	57.6
454/Roche	No	Direct mapping	27.3	21.2	30.0	11.0	7.1	2.1	0.3	0.3	0.1	99.4
454/Roche	Yes	ShoRAH	3.6	15.7	22.0	11.4	7.0	0.3	_	_	_	60.0
454/Roche	Yes	Direct mapping	6.0	34.3	37.2	9.6	11.7	0.4	0.4	0.1	0.2	99.9
Illumina GA	No	ShoRAH	53.1	19.5	15.1	7.2	2.7	1.6	0.2	0.2	0.2	99.8
Illumina GA	No	Direct mapping	41.7	15.4	24.8	10.3	4.5	1.5	0.3	0.3	0.1	98.9
Illumina GA	Yes	ShoRAH	7.6	46.8	27.1	7.3	5.3	1.9	_	_	_	96.0
Illumina GA	Yes	Direct mapping	5.9	34.7	36.6	10.4	10.3	0.7	0.6	0.2	0.3	99.7

Local versus global comparison

Assemble short Illumina reads

Locally reconstruct long 454 reads

Simulation study

Conclusions

- Local reconstruction in high-diversity regions can provide most information about the number and frequency of clones (but not their full-length sequences).
- For detecting local variation, most notably SNVs, coverage is more critical than read length.
- For detecting global variation, read length is most critical:
 - If reads are too short, nothing helps.
 - If reads are long and errors are frequent, combinatorial reconstruction will generate too many false positives.
 - If reads are long and errors are rare, global reconstruction works.

Software

Comparing QuRe, ViSpA, ShoRAH, PredictHaplo

non-PCR 454 reads

Comparing QuRe, ViSpA, ShoRAH, PredictHaplo

PCR 454 reads

Comparing QuRe, ViSpA, ShoRAH, PredictHaplo

- Main performance difference between methods: false positives
- "Fuzziness" helps:
 - Random path sampling (QuRe) seems to be beter than strict path cover or network flow
 - Fully probabilistic approach seems to work best.
- ...you might forget about all the numbers presented and **run your own experiments:** all methods and the dataset can be freely downloaded from the web.

Evolution of the 454 Platform: Simulated Reads

Reads simulated with **MetaSim** at different read lengths and diversities. Ten clone mix, frequencies decrease by factor of two from clone to clone. Same number of reads in each experiments (200,000).

Red: 2008, avg read length ≈ 340

Green: 2012, avg read length ≈ 700 .

Some Further Comments

- Length of reads is **the** important quantity.
- Preference for platforms producing long reads, like 454.
- Coverage is important for detecting low-abundance haplotypes.
- If read length is too short to cover conserved regions, increasing the coverage will not help.
- Next version of Solexa with 2×250 paired reads might become highly interesting, as well as alternative platforms like Pacific Biosciences etc.

ECCB 2012 Tutorial 4

Summary and clinical applications

Karin J. Metzner

Division of Infectious Diseases and Hospital Epidemiology

Case studies/examples

 Genetic diversity in tumors: Detecting low-frequency singlenucleotide variants (SNVs)

- 3x Tumour-normal: Tumour 1 Tumour 2 Tumour 3
- 1x Multiple lesions Primary 1 Primary 2 Metastasis
- Genetic diversity in virus populations: Local and global haplotype reconstruction

HR Gelderblom et al., Virology 1987

M Gerstung et al., Nat Comm 2012

Landscape of genomics analyses

haplotype reconstruction

L Ding et al., Hum Mol Genetics 2010

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

NGS-based diversity estimation: Main challenges

- Alignment (mapping) uncertainty
- Confounding sources of variation (errors) of multiple types
- Short read length relative to genomic region of interest

Error sources in next-generation sequencing

Comparison of next-generation sequencing platforms

454/Roche GS-FLX: up to 1'000'000 sequences/run length: 400-700 bp/read

Illumina HiSeq 2000: up to 1'500'000'000 seq./run length: 2x100 bp/read

ABI 5500 SOLiD : up to 900'000'000 seq./run length: 50-75 bp/read

Pacific Biosciences RS: up to 800'000 seq./run length: ~1'500 bp/read

Ion Torrent PGM: up to 5'000'000 seq./run length: 35-200 bp/read

Helicos HeliScope: up to 800'000'000 seq./run length: 25-55 bp/read

Historical development of next-generation sequencing technologies

N Beerenwinkel, V Roth, KJ Metzner _ ECCB 2012 Tutorial 4 «Genetic Diversity»

Growth in complete genomes

The International Nucleotide Sequence Database Collaboration, NAR 2010

Faster turn-around and dropping costs

platform	individual	No. of reads (millions)	read length (bases)	read coverage	genome coverage (%)	SNPs (millions)	No. of runs	estimated cost (US\$)	references
Sanger	J. Craig Venter	31.9	800	7.5×	N/A	3.21	>340,000	70,000,000	Levy et al., 2007
Roche 454	James D. Watson	93.2	250	7.4×	95	3.32	234	1,000,000	Wheeler et al., 2008
SOLID	James R. Lupski	238	35	29.6×	99.8	3.42	3	75,000	Lupski et al., 2010
Illumina Solexa	Yoruba male (NA18507)	3681	35	40.6×	99.9	4	40	250,000	Pushkarev 2009
	Han Chinese male (YH)	2950	35	36×	99.9	3.07	35	500,000	Wang et al., 2008
	Korean male (SJK)	1647	35, 74	29.0×	99.9	3.44	15	250,000	Ahn et al., 2009
	Korean male (AK1)	1910	36, 88, 106	27.8×	99.8	3.45	30	200,000	Kim et al., 2009
Helicos	Stephen R. Quake	2725	32	28×	90	2.81	4	48,000	Pushkarev et al., 2009

Table 5 Sequencing statistics of six individual human genomes

X Zhou et al., Protein Cell 2012

The future of next-generation sequencing: Data analysis

and more .. to come ...

NGS and clinical trials

KK Mestan et al., J Trans Med 2011

Whole-genome sequencing studies in cancer

Study	Method	Cancer type	Number of samples sequenced	Aberration type
Ley et al., 2008	Deep single-end whole-genome sequencing	AML	1	Point mutations, insertions, deletions
Campbell et al., 2008	Shallow paired-end whole-genome sequencing	Lung	2	Deletions, amplifications, tandem duplications, interchromosomal rearrangements
Stephens et al., 2009	Shallow paired-end whole-genome sequencing	Breast	24	Deletions, amplifications, tandem duplications, interchromosomal rearrangements, inversions
Pleasance et al., 2010	Deep paired-end whole-genome sequencing	Melanoma	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements
Pleasance et al., 2010	Deep paired-end whole-genome sequencing	Small-cell lung	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements
Mardis et al., 2009	Deep paired-end whole-genome sequencing	AML	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements
Shah et al., 2009	Deep paired-end whole-genome sequencing	Breast	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements
Ding et al., 2010	Deep paired-end whole-genome sequencing	Breast	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements, inversions
Lee et al., 2010	Deep paired-end whole-genome sequencing	Lung	1	Point mutations, insertions, deletions, amplifications, interchromosomal rearrangements, inversions

AML, acute myelogenous leukaemia.

M Meyerson et al., Nat Rev Genetics 2010

Cancer genome sequencing studies

Study type	Number of genes screened	Total number of mutations	Number of genes mutated	Average number of mutations per tumor	Estimated number of driver mutations	Reference(s)
Exomic						
Breast $(n = 11)$	18,191	1243	1137	84	140	87,88
Colorectal $(n = 11)$	18,191	942	848	76	140	87,88
Diverse $(n = 210)$	518	798	581	-	119	94
Pancreatic $(n = 24)$	20,661	1163	1007	48	160	98
Glioblastoma ($n = 21$)	20,661	748	685	47	155	102
Glioblastoma ($n = 91$)	601	453	223	-	8	103
Lung (n = 188)	623	1013	348	-	26	108
Genomic						
Acute myeloid leukemia ($n = 1$)	-	500-1000	10	Not applicable	10	82

JJ Salk et al., Ann Rev Pathol Mech Dis 2010
Limits of subclonal detection

- capillary sequencing
 - 25%
- NGS
 - 0.0002%
- future technologies
 - 0.????x%

The future is personalized medicine

a Current state of drug development research

Population of patients with given disease

b Ideal future objective of drug development research

Population of patients with given disease: all or nearly all respond to different drugs according to genotype

AM Issa, Nat Rev Drug Dis 2002

HIV drug resistance, individualized treatment

Some of numerous open questions in basic research

- Origin of viruses
- Are virus populations changing within the next decades?
 - Can we predict virus evolution?
- Do mutation rates vary within and between infected individuals?
 - Do host factors influence virus evolution?

Acknowledgements

- Christian Beisel (ETH Zurich)
- Rémy Bruggmann (FGCZ)
- Martin Däumer (SeqIT)
- Francesca Di Giallonardo (U Hospital Zurich)
- Yannick Duport (U Hospital Zurich)
- Nick Eriksson (23andMe)
- Moritz Gerstung (Sanger Institute)
- Huldrych Günthard (U Hospital Zurich)
- Eran Halperin (Tel Aviv U)
- Marzanna Künzli-Gontarczyk (FGCZ)
- Christine Leemann (U Hospital Zurich)
- Fabio Luciani (U New South Wales)
- Kerensa McElroy (U New South Wales)
- Holger Moch (U Hospital Zurich)
- Sandhya Prabhakaran (U Basel)
- Melanie Rey (U Basel)
- Bob Shafer (Stanford U)
- Armin Töpfer (ETH Zurich)
- Wan-Lin Yang (U Hospital Zurich)
- Osvaldo Zagordi (U Zurich)

<u>Funding:</u> SNF SHCS SystemsX.ch Vontobel Foundation